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Abstract: For the past several years, there has been growing interest in understanding the dynamics of parasites

in ecosystems, as well as the diversity of ways in which they interfere with conservation and health preoccu-

pations. Although it is widely recognized that many conservation practices (e.g., wildlife translocations, species

removal, food supplementation) may be associated with parasite-related problems, less attention has been

devoted to exploring the parasitological consequences of the overcrowding of animals in protected wildlife

areas. Here, we discuss this important ecological/epidemiological problem, presenting at the same time an

overview of the main questions and challenges in this field. Using empirical and theoretical examples chosen

from the literature, we focus particularly on the interactions between the overcrowding of free living species

and parasite population dynamics, the evolution of parasite virulence, the indirect effects on the structure of

invertebrate communities, as well as the nutritional value of prey species. We argue that conservation policies

should be aware more than ever of this problem, especially given the serious health risks currently posed by the

spread of virulent viruses (e.g., avian influenza).
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Over the past decades, a great deal of attention has been

devoted to understanding the ecological importance of

parasites and pathogens in ecosystems (Thomas et al., 2005;

Collinge and Ray, 2006; Hudson et al., 2006). A large body

of theoretical and empirical work has now documented how

parasites, in spite of their small size, are functionally

important in ecosystems, often intervening through subtle

mechanisms but having profound effects (Poulin, 1999). As

a result, most conservation biologists are, for instance,

aware that parasitism is one of the most significant causes of

population regulation in many species under natural con-

ditions (Anderson and May, 1978; Anderson and Gordon,

1982; Scott, 1988; Rousset et al., 1996; Moller, 2005). Sim-

ilarly, it is widely accepted that the introduction or the

elimination of a parasite in an ecosystem can strongly affect

the interactions between a diverse range of species in the

community, both hosts and non-hosts, and hence affect

biodiversity (Torchin et al., 2002; Lafferty and Kuris, 2005).

Despite these advances, it remains highly challenging

for conservationists to deal with parasites and to incorpo-

rate them in most everyday situations. This is largely due to

the huge diversity of ways in which parasites intervene in

ecosystems. In addition, most, if not all, conservation ac-
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tions may potentially have parasitological consequences.

For instance, while vaccines and antibiotics appear at first

glance as efficient solutions to reduce infection risks in

endangered species, they may, in contrast, favor the sub-

sequent vulnerability of individuals to infection when the

population reaches a favorable size for epidemic establish-

ment (Cleaveland et al., 2002). Similarly, while the sup-

plementation of food can greatly help to reduce starvation

and/or to enhance breeding output when food shortage is a

real problem, it can also dramatically contribute to the

spread of viruses, bacteria, or other parasites associated

with food and/or transmitted by contagion (e.g., Wilson

and Macdonald, 1967). In raccoons, for instance, when

food provisioning results in the spatial concentration of

hosts around food sources, the consequence is an increase

in infection levels by directly transmitted nematode para-

sites (Wright and Gompper, 2005). The removal of par-

ticular species (e.g., competitor, predator, introduced

species) can have major demographic consequences for

other species, which, in turn, may favor the explosion of

parasitic infections (Packer, 2003; Lafferty and Kuris, 1993;

Lafferty, 2004). Finally, it is also well known that wildlife

translocations that do not take into account infection risks

can dramatically fail because of parasites (Cunningham,

1996; Sasal et al., 2000; Collyer and Stockwell, 2004). In

addition to these phenomena that are now widely recog-

nized, we would like here to draw attention to an under-

estimated phenomenon, which concerns the parasitological

consequences of overcrowding in protected areas. Rather

than advocating a particular view or course of action, our

intention here is to use this piece as a call for future re-

search in this area. We use mainly the case of waterbirds to

illustrate our point, but the generality of our comments

extends to other types of animals in protected reserves.

Protected areas often encompass a very small portion

of the total surface area potentially suitable (Dompka,

1996). In addition, even when they appear relatively large in

terms of surface, the true optimal size of protected areas

remains a relative parameter as it mainly depends on the

number/type of species present. During the hunting season

or reproductive periods, for instance, the confinement of

birds inside protected areas can be extreme, with densities

reaching values of several tens of thousand birds in only a

few hectares (Tamisier and Dehorter, 1999; Béchet et al.,

2004). The local increase in the number of hosts can have

dramatic consequences for the spread of parasites in the

whole population (Scott, 1988; Ezenwa, 2004). Both theo-

retical arguments (Anderson and May, 1978; Roberts et al.,

2002) and empirical evidence (Arneberg et al., 1998; Mo-

rand and Poulin, 1998; Arneberg, 2001; Nunn et al., 2003)

are in total agreement: local host density is a major deter-

minant of infection levels and the number of parasite

species supported by a host population. In addition, as

illustrated by recent mathematical developments (Hoch-

berg et al., 2000), demographic differences across geo-

graphical landscapes can produce selection mosaics in

interacting species, with virulent parasites being most likely

to be found in habitats where host population density is the

highest. As long as protected areas remain synonymous

with high animal concentrations, their potential role in

amplifying pathogen demography will persist. The use of

treatments or vaccine, if any, in protected areas is likely to

lead to the selection of resistance. The idea that protected

areas may then constitute production units of ‘‘pathogen

resistant ecosystems’’ is a complex problem at the interface

between conservation and public health.

Not only do protected areas favor high population

densities, they also usually have a positive effect on species

richness (Bolden and Robinson, 2003). Because of this, they

are also likely to trigger disease outbreaks by pushing

parasites and hosts closer together. In extreme cases, this

type of phenomenon favors the emergence of new diseases

since increased interspecific contacts, and/or the elimina-

tion of the preferred host species, may result in parasites

‘‘jumping’’ to new host species. To our knowledge, con-

servation policies have not attached any real importance to

this ecological/epidemiological problem in the context of

wildlife reserves. These considerations, however, appear

more than ever relevant in light of the serious health

problems currently posed by the spread of highly patho-

genic strains of avian influenza A viruses. Wild waterfowls

are considered the natural reservoir of these viruses. Since

infected birds mainly shed the virus in their feces, and given

that it can survive in water for long periods (Stallknecht et

al., 1990), attention should be paid to how overcrowding in

protected areas lends itself to the spread of these diseases.

Increased host densities are also likely to increase ecto-

parasite transmission (see review in Côté and Poulin,

1995). High ectoparasite loads have been shown to cause

nest desertion and chick mortality in a range of bird species

(Feare, 1976; King et al., 1977; Duffy, 1983). There is also

clear evidence of the impact of ectoparasites on reproduc-

tive success and avian population dynamics (Boulinier and

Danchin, 1996; Gauthier-Clerc et al., 1998).

In addition to influencing the dynamic of directly

transmitted parasites, there is also much evidence that local
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concentrations of vertebrates significantly determine spatial

and temporal variation in the prevalences and species

composition of parasites with complex life cycles. Water-

birds are definitive hosts of a broad spectrum of parasites

including flukes (Digenea), tapeworms (Cestoda), round-

worms (Nematoda), and thorny-headed worms (Acan-

thocephala). Many invertebrates such as mollusks (snails,

bivalves), crustaceans, and also fish commonly act as first

and second intermediate hosts for these parasites. Several

studies have found a positive relationship between the

distribution of waterbirds and prevalences of parasitic

worms in invertebrate species (e.g., Matthews et al., 1985;

Bustnes et al., 2000; Skirnisson et al., 2004) as well as in fish

intermediate hosts (Marcogliese et al., 2001). Trematode

parasites of snails typically attain higher densities in salt-

marsh reserves than in degraded areas (Lafferty and Gerber,

2002). The parasites detrimentally affect these invertebrates,

for instance, by castrating them and/or by reducing their

resistance to fluctuations in abiotic conditions. The regular

and massive release of infective stages resulting from

waterbird concentrations can therefore have dramatic

consequences for invertebrate communities through direct

or indirect effects on their populations (i.e., interference

with interspecific competition). For example, in popula-

tions of the periwinkle, Littorina littorea, a first interme-

diate host of trematodes, Lauckner (1987) observed cases of

‘‘zero growth’’ due to high rates of parasite-induced cas-

tration. Similarly, in the New Zealand mud snail Zeacu-

mantus subcarinatus, the prevalence of trematode infections

varies among localities in parallel with local abundance of

bird definitive hosts, and trematode prevalence has proven

to be the key regulating factor of local snail densities

(Fredensborg et al., 2005, 2006). For definitive hosts as well,

a high rate of infection by parasitic helminths may be

detrimental. For instance, epizootics have been reported

among bird hosts heavily infected with trematodes

(Lauckner, 1985) and, in extreme cases, tapeworm or

nematode infections have even been associated with mass

mortality events (e.g., seabirds: Muzaffar and Jones, 2004).

Although further evidence would be welcome, all these

phenomena are expected to be amplified in protected areas.

A final possibility concerns the parasite-induced con-

sequences of overcrowding on the trophic potential of the

habitat. Indeed, parasites, by definition, divert resources

from their hosts. For this reason, although parasitized prey

are often easy to capture (Lafferty, 1992), they may be less

profitable than unparasitized ones for predators, especially

when parasitic loads are high. In addition to the reduction

of profitability associated with infection, a global decrease

of prey body size (in all individuals, infected or not) is

expected in highly parasitized areas as the result of parasite

pressures selecting for early sexual maturity (Lafferty,

1993a, b; Fredensborg and Poulin, 2006). The loss of tro-

phic potential in areas characterized by high parasite pre-

valences is not documented at the moment but is

undoubtedly substantial (but see Plowright, 1982; Dobson,

1995ab; Lafferty and Kushner, 2000, for counterexamples).

Famous case studies, for instance, the rinderpest virus in

East Africa or the epizootic of sarcoptic mange in Scandi-

navia (Lindstöm et al., 1994), have also taught us that the

impact of parasites on food webs may, because of cascade

effects, result in profound disequilibria at the ecosystem

level, especially when it indirectly changes herbivore

demography and, thus, plant communities. In addition, De

Castro and Bolker (2005) as well as Lafferty et al. (2006)

recently highlighted that, in contrast to the classic belief,

parasites disproportionately dominate food webs in eco-

systems. Predators often ingest parasites when feeding, and

such links have a large effect on food web connectance

(percentage of possible links realized). Similarly, while top

predators serve disproportionately as hosts, species at the

mid-trophic levels have the highest combined vulnerability

to natural enemies (parasites and predators). These phe-

nomena need to be taken into account to properly assess

the vulnerability of species according to their trophic level,

as well as the stability and the structure of food webs in

general (Lafferty et al., 2006).

A promising way of studying the interactions between

parasites and overcrowding would be to manipulate vari-

ables influencing host densities in large experimental areas

and to measure the resulting parasitological consequences.

Alternatively, several studies have illustrated that grouping

(as a behavioral trait) varies between populations, and/or

can also be selected for in certain species (see Krause and

Ruxton, 2002). Such situations could be used to explore the

parasitic consequences of overcrowding. Species compari-

sons may also allow far-reaching conclusions regarding the

relationships between social organization and ecological

parameters like levels of parasitism. Animals that regularly

and naturally congregate at extremely high densities on

small areas (e.g., pinnipeds, penguins, or shorebirds) pro-

vide fruitful biological situations for such considerations.

Indeed, because social congregation on islands is some-

what analogous to protected areas in terms of isolation,

though it results from thousands of years of evolution,

these species might help to predict long-term ecological
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and parasitological consequences of overcrowding. Another

interesting situation is provided by domesticated species. In

many cases, the wild ancestor and its geographic range have

been identified, its relation to the domestic breed has been

determined by genetic and chromosomal studies, its

changes under domestication have been delineated, and the

approximate time and place of its domestication have been

identified (see Diamond, 2002, for review). Correlations

between historical and parasitological data should help to

understand the evolutionary consequences of infectious

diseases in isolated populations.

While reserves are in many cases an effective means of

protecting wildlife from threats, they can, in certain cir-

cumstances, enhance the spread of infectious diseases. The

parasitological consequences of host overcrowding in pro-

tected areas are probably inescapable, although more

studies would be welcome at the moment to quantify such

phenomena. Should conservation managers be happy or

unhappy when wildlife reserves are packed full of species/

individuals compared to outside areas? The parasitological

consequences of such disequilibria should be considered as

an important point in discussions concerning the optimal

characteristics of protected areas.
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