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We derive an analytic expression for the evolutionarily stable dispersal rate that formalizes the
balance between the e!ects of four factors: the cost of dispersal, the extinction rate, the
coe$cient of relatedness and the mode of dispersal (i.e. the probability of common origin of
immigrants). This result allows us to study the e!ects of each factor and, more interestingly, the
interactions between them. In particular, we show that the evolutionarily stable dispersal rate
is not always a decreasing function of the cost of dispersal and an increasing function of
relatedness. These counter-intuitive results are discussed in the light of kin selection theory. We
also present the results of numerical simulations in which relatedness is not a "xed parameter
but depends on di!erent parameters including dispersal itself. We discuss these results and
show how the evolutionarily stable dispersal rate is a!ected by the environment and the life
history traits of the species. More generally, this paper presents a simple formalism allowing
the study of the e!ects of kin selection in unstable environments (i.e. with extinctions and
recolonizations). The implications of this formalism for the understanding of the evolution of
other life history traits is brie#y discussed.

( 1999 Academic Press
Introduction

The evolution of dispersal results from a balance
between opposing forces. Two main factors may
select against dispersal. First, the cost of disper-
sal: dispersing individuals might incur a cost due
to either increased mortality during the dispersal
phase, or disadvantages during the settling
period in the novel environment. Second, the cost
due to the spatial variability of the environment.
In a spatially heterogeneous environment, disper-
sal will be selected against because it will often
lead to bad environments (Balkau & Feldman,
1973; Hastings, 1983; Holt, 1985). Other factors
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favour dispersal, in particular, when the environ-
ment is variable in time, some level of dispersal
will be selected for (Gillespie, 1981; Levin et al.,
1984; McPeek & Holt, 1992). An extreme case of
temporal variability is the local extinction of
populations. Indeed, when extinctions occur, dis-
persal is favoured because each particular popu-
lation will eventually become extinct and only
o!spring that have emigrated will be able to
recolonize these sites (Comins et al., 1980;
Olivieri et al., 1995). The degree of relatedness
within each population is also involved in the
evolution of dispersal since dispersal may be
adaptive if it reduces competition between rela-
tives (Hamilton & May, 1977; Comins et al.,
1980; Motro, 1982a, b; Frank, 1986; Taylor, 1988;
Taylor & Frank, 1996).
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In this paper, we consider the evolution of
dispersal under the action of four factors: the cost
of dispersal, the extinction of populations, the
relatedness within populations and the mode of
dispersal (i.e. the probability of common origin of
immigrants). Our approach allows us to unify the
results of several authors and shows in a simple
way how di!erent factors (environmental or life-
history traits) may interact. This approach is
based on a two-step argument: "rst, we use the
&&direct "tness'' formulation of inclusive "tness
developed by Taylor & Frank (1996) to derive an
analytic expression for the evolutionarily stable
dispersal rate, where the assumption of no extinc-
tions that was assumed in the preceding models
(Frank, 1986; Taylor, 1988; Taylor & Frank,
1996) is relaxed. Throughout this "rst part, we
consider that relatedness is a "xed parameter. In
a second step, we relax this assumption and study
the evolution of dispersal, where relatedness is
used as a dynamical variable that depends on
several factors including dispersal itself. Even
though the latter situation is far more realistic, we
report the results of both cases for heuristic
reasons. This approach, largely inspired by the
work of Frank (1986) and Taylor (1988), enables
us to study both direct (when relatedness is used
as a "xed parameter) and indirect e!ects (when
TABL

Main parameters and variables
either be a parame

Parameters
c Cost of dispersal
N Population size
n Fecundity
e Extinction rate
/ Dispersal mode: probability

<ariables
d Dispersal rate
d* ES dispersal rate
d
ext

Dispersal rate below which
d
lim

Dispersal rate above which
m Immigration rate
N@ Number of individuals com
z Number of immigrants per
F
t

Frequency of population co
k Probability that a random
G

p
Marginal gain in "tness fro

G
d

Marginal gain in "tness fro
R Average within-populations
relatedness is used as a dynamical variable) of
several parameters, on the evolution of dispersal.
The explicit consideration of direct and indirect
e!ects reveals some interesting interactions be-
tween the various factors a!ecting dispersal.
Indeed, factors typically thought to select for
decreased dispersal, e.g. higher cost of dispersal,
may, under certain circumstances, select for in-
creased dispersal. We report only main results in
the text. The detailed mathematical derivations
are con"ned to the appendices.

The General Model

LIFE CYCLE

The model presented below is based on the
following assumptions (see also Table 1 and
Fig. 1; the description of the life cycle starts right
after the competition stage in Fig. 1): (1) the
habitat consists of an in"nite number of patches;
(2) after extinctions and before reproduction,
each patch is either empty or contains a popula-
tion of N reproducing haploid and asexual
individuals. The average within population re-
latedness is R. (3) Each individual produces n
o!spring. Generations are discrete and non-
overlapping. (4) A proportion 1!d of the
progeny remains in the same population, while a
E 1
of the model. Relatedness can
ter or a variable

of common origin of immigrants

the metapopulation goes extinct
all sites are at carrying capacity

peting on non-extinct patches
generation in each patch
lonized t generations ago
individual is native to its patch
m philopatric o!spring
m dispersing o!spring
relatedness



FIG. 1. General life cycle. See Table 1 for the de"nition of
the parameters.
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proportion d disperses and may eventually reach
another patch (full or empty). (5) Dispersing
progeny incur a cost of dispersal, c. (6) Di!erent
modes of dispersal are characterized by the prob-
ability / of common origin of migrants (Whit-
lock & McCauley, 1990). For example, if /"0,
individuals emigrating from a given population
will settle in di!erent populations (or in other
terms, all immigrants come from di!erent popu-
lations). When /"1, all immigrants come from
a single population (i.e. propagule pool model of
dispersal). The relatedness among immigrants is
thus equal to /R. For example, the biological
interpretation of this parameter can be easily
understood within the context of host}parasite
interactions. See the Discussion for more details.
(7) Each population is colonized both by
philopatric individuals and by immigrants.
Empty patches are recolonized by immigrants.
(8) For mathematical simplicity we assume that,
before reproduction, both colonized and re-
colonized sites contain N individuals. This condi-
tion is always ful"lled if the fecundity of each
individual is very large (i.e. there are enough
immigrants to "ll each patch). When fecundity is
limited, we assume that unsaturated populations
grow to N through intercalary generations as in
Comins et al. (1980). (9) Extinctions of popula-
tions occur after colonization and recolonization
with a probability e (even newly recolonized
populations may go extinct). For the sake of
simplicity, we assume throughout the paper that
all populations receive the same number of immi-
grants, dNn(1!c) (1!e), which also corres-
ponds to the number of founders in the case of
newly colonized populations.

Under these assumptions, the metapopulation
is viable if (see Appendix A)

d'd
ext

"

e
Nn(1!c) (1!e)

. (1)

This condition simply means that the number of
successful migrants has to be greater than the
extinction rate for the metapopulation to survive.

For the derivation of the evolutionarily stable
(ES) dispersal rate, we will consider only the cases
where the probability of recolonization of empty
patches is equal to one, which leads to an even
more stringent condition (see Appendix A):

d'd
lim

"

1
Nn(1!c) (1!e)

. (2)

If condition (2) is ful"lled, at equilibrium the
metapopulation reaches a stable age structure
distribution (Olivieri et al., 1995):

F
t
"e(1!e)t (3)

where F
t
is the frequency of patches that have

been colonized t generations ago.

INCLUSIVE FITNESS

Let us focus on a particular individual i. As
"rst pointed out by Hamilton (1964, 1970), the
inclusive "tness of this individual will depend on
its own success as also on the success of its related
neighbours. As a consequence, the derivation of
the inclusive "tness requires the incorporation of
the e!ects of relatives through the characteriza-
tion of the group j of age t that interacts with the
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individual i. In this respect, let us assume that the
dispersal rate of the o!spring of an individual i in
a population j of age t is dt

ij
. The average disper-

sal rate in a population j of age t is dt
j

and the
average dispersal rate in the whole metapopula-
tion is d. The "tness = of a randomly chosen
individual in the metapopulation depends on its
own phenotype, dt

ij
, and on the average pheno-

type, dt
j
, of its group of neighbours:

="

=
+
t/0

(F
t
) (dt

ij
, dt

j
)). (4)

The calculation of= is given in Appendix B.

MARGINAL GAINS IN FITNESS

Let the phenotype of individuals be deter-
mined by their genic value, x. Following the
approach of Taylor & Frank (1996) and Frank
(1997, 1998), we assume the population to be
monomorphic (i.e. all individuals have the same
genic value, x*), select a random allele at this
locus, mutate that allele and its identical by de-
scent copies and ask if this mutant allele will
increase in frequency. A standard condition for
x* to be evolutionarily stable is that the deriva-
tive of = with a deviant value x, is zero at
x"x*. The derivative of= (d=/dx) is the rate
of change of the inclusive "tness, D=IF, with
a deviant value x and can be decomposed in the
following way:

D=IF"D=IF
1
#D=IF

2
, (9)

where G
p
"!D=IF

1
and G

d
"D=IF

2
are the

marginal gains in "tness from philopatry and
from dispersal (Taylor & Frank, 1996). In Appen-
dix C we show that

Gp"p[d] [(1!e)!Rk] , (10)

Gd"
e
d

[1!R/]#p[d](1!c) (1!e)2

C
1!d#(1!R/) (1!c) (1!e)d

1!d#(1!c) (1!e)d D , (11)

where p[d] is the probability that an o!spring
competing in a non-extinct population will win
a breeding spot multiplied by the number of
o!spring and k is the probability that a random
individual is native to its patch (see Appendix
C for their explicit formulation).

Not surprisingly, the gain from philopatry de-
pends on the probability that an o!spring will
win a breeding spot in the same undisturbed
population and on the average relatedness be-
tween reproducing individuals. The gain from
dispersal, on the other hand, has two compo-
nents. The "rst part on the right-hand side of
eqn (11) represents the gain from o!spring dis-
persing in previously disturbed patches, while the
second part represents the gain from o!spring
dispersing in undisturbed patches. It is worth
noting that G

p
depends only on the relatedness

between immigrants (i.e. the product R/), while
the mode of dispersal has no e!ect on G

p
if

individuals within populations are not related
(i.e. R"0), just as relatedness does not a!ect G

p
if

all immigrants originate from di!erent popula-
tions (i.e. /"0). These observations will be very
useful later to explain the e!ects of the various
parameters on the evolutionarily stable dispersal
rate.

EVOLUTIONARILY STABLE DISPERSAL RATE

The condition on d to be evolutionarily stable
(i.e. D=IF"0) reduces to

G
p
"G

d
. (12)

Solving eqn (12) leads to the general solution

d*"
A!JA2!4e(1!R/)B

2B
, (13)

where

A"c#e2(1!c)#e!R(1!e)

!2e/R(c#e(1!c)), (14)

B"(c#e(1!c))2!R(1!e)!/R((1!c)2

!e(3!6c#2c2)#e2(3!4c#c2)). (15)
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In the absence of extinctions this reduces to

d*"G
R!c

R!c2#/R(1!c)2
, if c(R,

0 if c'R

which is a generalization of the ES dispersal
rate found by Frank (1986), taking the mode
of dispersal into account [Frank's result, d*"
(R!c)/(R!c2), was obtained for /"0].

When some extinctions occur, our solution
yields the result obtained by Comins et al. (1980),
d*"e/(1!(1!c) (1!e)), if we assume that
NPR (i.e. when RP0). Moreover, this solution
collapses to Van Valen's (1971) result, d*"e, if
we further assume that c"1.

The e!ects of the four parameters of the model
(e, /, R, c) on d* are summarized in Fig. 2 and
Table 2. The major results are:

(1) ¹he e+ect of e : as previously shown by
several authors (Comins et al., 1980; Comins,
1982; Levin et al., 1984; Olivieri et al., 1995) d*
always increases with e. Contrary to the &&stable''
case treated by Frank, when extinctions occur,
some level of dispersal is always selected for.
A special case occurs when /"1 and R"1. In
this case, d* is equal to 0.5, whatever be the cost
of dispersal and the extinction rate [Fig. 2(f)].
FIG. 2. Evolutionary stable dispersal rate (d*) vs. the cost o
/"0 and (a) R"0, (b) R"0.5 and (c) R"1. On the lower
(2) ¹he e+ect of /: not surprisingly, when all
individuals are unrelated (i.e. R"0), the mode of
dispersal (/) does not a!ect the evolution of dis-
persal [cf. Figs. 2(a) and (d)]. When R'0, d* is
lowered by an increase of the probability of com-
mon origin, /, because then the immigrants in-
creasingly compete against relatives. This e!ect
can be seen in the expression of the marginal
gains in "tness from dispersal: G

d
is a decreasing

function of /R.
(3) ¹he e+ect of R: when /"0, d* always in-

creases with R. Dispersal evolves in order to avoid
kin competition (Hamilton & May, 1977; Comins
et al., 1980; Frank, 1986). Note that the marginal
gain in "tness from philopatry, G

p
, is always a de-

creasing function of relatedness (see also Fig. 3).
However, when /'0 and the cost of dispersal is
low, d* can decrease when relatedness increases
[see Fig. 2(d)}(f)]. This counter intuitive result
can be explained by the kin competition that oc-
curs between immigrants as soon as they are
related (i.e. /R'0). This e!ect is especially im-
portant in newly colonized populations where
competition takes place only between immigrants.
In this case, higher levels of relatedness induce an
extra cost of dispersal, i.e. the cost of competing
against relatives in newly founded populations.

(4) ¹he e+ect of c: Frank (1986) showed that in
the absence of extinctions d* always decreases
f dispersal, c, and the extinction rate (e). On the upper row
row /"1 and (d) R"0, (e) R"0.5 and (f ) R"1.



TABLE 2
Main e+ects of increases of various parameters and variables on d*. ¹he last two parameters, N and n, only

a+ect d* through their e+ects on relatedness

Parameter Condition E!ect on d* Mechanism

e [ Colonization of new sites
/ W Kin competition among immigrants
R /"0 [ Kin competition in the natal site

/'0, e'0 W Kin competition among immigrants
c e"0 W Avoid cost of dispersal

/"0, e'0, RP1, cP1 [ Kin competition in newly founded populations
N /"0 W Kin competition in the natal site

/'0, e'0 [ Kin competition among immigrants
n cP0, e"0 [ Because R [

cP1, e'0 W Because R W
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when the cost of dispersal, c, increases. This is not
always the case when extinctions occur. In par-
ticular, when relatedness is very high d* can in-
crease with c [see Fig. 2(c)]. Comins et al. (1980)
found a similar result (an increase of d* for high c)
which they interpreted as a way to avoid the
extinction of the entire metapopulation. Indeed,
when c and e are large, the recolonization process
may not be su$cient to compensate for the ex-
tinction of populations [see eqn (1)]. However,
this explanation cannot account for our results
because the increase of d*, with increases in the
cost of dispersal, can be observed even when
the entire metapopulation is viable. For instance,
the metapopulation is always viable if we assume
in"nite fecundity (i.e. nPR) though this assump-
tion does not alter the result [see eqn (13)].

We propose an alternative explanation based
on the comparison of the marginal gains in "t-
ness from philopatry, G

p
, and from dispersal, G

d
.

Indeed, it can be shown that the return from
dispersal is always a decreasing function of the
cost of dispersal. The return from philopatry,
however, has a complex interaction with c me-
diated by the level of relatedness. To understand
this interaction, it is useful to notice that in-
creases in the cost of dispersal result in lower
numbers of successful immigrants, and hence as
c increases each population contains a larger
proportion of philopatric individuals. When re-
latedness is low, such increases of the cost of
dispersal increase the return from philopatry,
since at the same time the return from dispersal
decreases, overall, selection favours decreases of
the dispersal rate. When relatedness is large,
however, increases in c cause more and more
competition between highly related philopatric
individuals and hence decrease the return from
philopatry (see Fig. 3). Actually, when both c and
R are large, marginal gains in "tness from both
dispersal and philopatry decrease with higher
costs of dispersal. Extinctions, through the bene-
"t accrued to dispersing individuals during the
colonization of empty sites, provide an extra be-
ne"t from dispersal and thus lead to the increase
of d* with higher cost of dispersal when c and
R are very large [see Fig. 3(b)]. This last bene"t is
in turn cancelled if dispersing individuals are
highly related (i.e. large /) and indeed, in that
case, we do not observe any increase of d* for
very large c. [see Fig. 2(f)].

The formalization that we used explicitly iden-
ti"es the e!ects of kin selection through the coef-
"cient of relatedness, R. Including this parameter
explicitly, allows us to derive an analytic expres-
sion that clari"es the e!ect of several parameters
[see eqn (13)]. Moreover, the marginal gains in
"tness analysis untangles the e!ects of these
parameters and provides explanations for
counter-intuitive results (e.g. increase of d* with
higher c or with lower R). Although very useful,
the assumption that relatedness is a "xed para-
meter is unrealistic. Indeed, relatedness depends
on the dispersal rate, the mode of dispersal, as
well as on several other demographic and envir-
onmental factors (see Fig. 4 and Appendix D). In



FIG. 3. Marginal gains in "tness from philopatry, G
p
(full

line) and from dispersal, G
d

(dashed line) vs. the cost of
dispersal, c, for three levels of relatedness (R"0.1, 0.5 and
0.9), for d"0.85, /"0 and for (a) e"0 and (b) e"0.5. For
these parameter values the bene"t to produce a disperser,
G

d
, always decreases with c and does not depend on related-

ness. When relatedness increases the return from philopatry,
G

p
, may decrease with c (for high values of c). When some

extinctions occur, this can lead to an increase of the ES
dispersal rate when c increases (see explanations in the text).

FIG. 4. Direct and indirect e!ects of various parameters
on the evolution of dispersal. When relatedness is used as
a "xed parameter (a), we study the direct e!ects of para-
meters on the evolution of dispersal. When relatedness is
used as a dynamical variable (b), we study both the direct
and the indirect e!ects of parameters on the evolution of
dispersal
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the following section, we extend the previous
model by taking into account the indirect e!ects
of these parameters on the evolution of dispersal.

Relatedness as a Dynamical Variable

In the "rst subsection, we outline the main
results of the e!ects of life-history traits and en-
vironmental parameters on relatedness (the deri-
vation of relatedness is given in the Appendix D
and a summary of these e!ects is presented in
Table 3). We assume that each individual has an
in"nite number of o!spring (nPR). This as-
sumption simpli"es the algebra, ensures that the
metapopulation is viable and all the sites are
occupied as soon as some dispersal occurs [see
eqns (1) and (2)] and helps to better understand
the e!ects of the other parameters. We then relax
the hypothesis of in"nite fecundity.

In the second subsection, we discuss how these
parameters a!ect dispersal directly and indirectly
through their e!ects on relatedness.

RELATEDNESS

The derivation of relatedness presented in Ap-
pendix D allows us to study the e!ects of the
environment (cost of dispersal, extinction rate,
population size) and of the life-history traits of
the species (mode of dispersal, fecundity) on re-
latedness. A summary of these e!ects is presented
in Table 3. Below we comment on the main
results.

First, consider the case /"0 and nPR. As
already noted by many authors, relatedness de-
creases when either the size of the populations, N,
or the immigration rate, m, increases (m is the
probability that a randomly chosen individual is



TABLE 3
Main e+ects of increases of various parameters and

variables on relatedness

Parameter Condition E!ect on R

N W

n e"0 [
e'0 W

/"0 W

d d small, /"1 W

d large, /"1 [
/ [
c [
e /"0 W

/"1 [
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an immigrant). The immigration rate depends on
several factors (d, c, e ; see Appendix D.1). When
d increases or when c decreases, immigration
increases and relatedness decreases. Since extinct
populations are always recolonized in our model,
higher extinction rates, like immigration, increase
the &&turn over'' of the metapopulation and tend
to decrease relatedness.

Second, when immigrants originate from the
same population (i.e. /'0), R increases because
immigrants are related. An increase of /, may
also a!ect qualitatively the e!ects of dispersal. In
particular, when /"1, relatedness is minimized
for intermediate values of dispersal. Indeed, if
dispersal is very low, relatedness is very high
because of the classical e!ect of migration. If
dispersal is very high, relatedness is very high as
well, but this is so, because there are almost no
philopatric individuals and immigrants are all
related (i.e. /"1). For intermediate values
of dispersal, relatedness is minimized since
immigrants and philopatric individuals are not
related.

Finally, higher fecundity tends to increase
relatedness in the absence of extinctions (see
Appendix D.2). This e!ect is due to an increase of
the probability that two randomly chosen o!-
spring are sibs. However, when some extinctions
occur, relatedness increases when fecundity de-
creases. This arises because reduced fecundity
results in lower numbers of immigrants and,
more importantly, in lower numbers of founders
in empty patches. When newly founded popula-
tions are founded by fewer colonizers, relatedness
tends to increase. This increase of relatedness
because of founding events occurs when either
fecundity, the size of the populations or dispersal
decreases but also when the cost of dispersal or
the extinction rate increases.

COEVOLUTION OF THE DISPERSAL RATE

AND RELATEDNESS

Let us "rst assume that each individual pro-
duces an in"nite number of o!spring (i.e. nPR).
The results obtained through numerical simula-
tions are qualitatively very similar to those
obtained when relatedness is used as a "xed
parameter. Below we report the main results:

(1) ¹he e+ect of e: d* always increases with
e (Fig. 5). A special case is when N"1. Indeed, if
N"1 relatedness is equal to one. If /"1, we are
exactly in the case shown in Fig. 2(f) and d*"0.5
whatever be the cost of dispersal and the extinc-
tion rate.

(2) ¹he e+ect of N: the carrying capacity acts
only indirectly (via its e!ect on relatedness) on
the evolution of dispersal (see Fig. 4). Indeed,
increase in population size decreases relatedness
and, as a consequence, greatly a!ect d* (Fig. 5).
When /"0, lower relatedness always decreases
dispersal (Fig. 2) and, not surprisingly, larger
carrying capacity decreases d* [see Figs 5(a) and
(b); see also Taylor, 1988]. However, when /'0
and when extinctions occur, lower relatedness
may select for higher dispersal rates (see Fig. 2).
Consequently, in this situation, larger carrying
capacity may increase the evolutionarily stable
dispersal rate [see Fig. 5(c) and (d)].

(3) ¹he e+ect of c: d* decreases with the cost of
dispersal (Fig. 5). The only exception occurs
when N is small (i.e. N(5) where d* can increase
with c [see Fig. 5(a) and (b)]. However, we show
in the following subsection that, when the as-
sumption of in"nite fecundity is relaxed, d* may
increase when c is high under a much wider range
of population sizes.

(4) ¹he e+ect of /: an increase in the probabil-
ity of common origin has two e!ects. It increases
the relatedness among immigrants and, at the
same time it increases the average within-popu-
lation relatedness, R. The "rst e!ect is an



FIG. 5. Numerical solutions of the ES dispersal rate (d*) vs. the cost of dispersal for asexual organisms for di!erent sizes of
the population: N"1 (light), N"10 (medium) and N"100 (bold). On the upper row /"0 and on the lower row /"1. On
the left, e"0.1; on the right, e"0.5.
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additional cost of dispersal, while the second one
is an additional cost of philopatry. Overall, nu-
merical simulations show that the extra cost due
to kin competition is higher for immigrants than
for philopatric individuals and, as a consequence,
higher / generally decreases the ES dispersal rate
(see Fig. 5).

We now assume that each individual produces
a "nite number, n, of o!spring. This more realistic
assumption has mainly two e!ects. First, the dy-
namics of the metapopulation can be greatly af-
fected by a "nite fecundity. In particular, when
some extinctions occur, the whole metapopula-
tion can get extinct (see Appendix A). Second, it
modi"es the calculation of relatedness (see Ap-
pendix D.2). We "rst show the e!ects of relaxing
the assumption of in"nite fecundity on the evolu-
tion of dispersal. Since we know from Appen-
dix A that if d(d

lim
, a certain proportion of the

metapopulation will be empty even after the dis-
persal phase, we will consider only the cases
where d*'d

lim
. Indeed, if some populations stay
empty after the recolonization phase, both the
derivation of the ES dispersal rate and the calcu-
lation of relatedness would not be correct.

Figure 6 shows the e!ect of fecundity on the ES
dispersal rate. The e!ects of fecundity are only
indirect (see Fig. 4). When c is very low, d* tends
to increase with higher fecundity. This is due to
the increase of relatedness with higher fecundity
when the average number of immigrants is very
large (i.e. when e and c are very low; see explana-
tions in the previous subsection on relatedness).
When c is very high, higher fecundity decreases
d* because it also decreases relatedness.

Finite fecundity also interacts with the e!ects
of other parameters. In particular, when each
individual produces only a "nite number of o!-
spring, d* tends to increase with very high values
of the cost of dispersal, whatever be the size
of the populations. This result is similar to the
results obtained by Comins et al. (1980) where
they always found an increase of d* with very
high c.



FIG. 6. E!ect of fecundity on ES dispersal rate. Numer-
ical solutions of the ES dispersal rate (d*) vs the cost of
dispersal for n"1 (light), n"5 (medium) and n"50 (bold).
Other parameter values: N"10, e"0.2, /"0. When c is
very large the evolutionarily stable dispersal rate can lead to
situations where the metapopulation occupancy is not maxi-
mized (i.e. d*(d

-*.
). We did not derive d* in these cases.
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There is a large amount of theoretical work on
di!erences between evolutionarily stable and op-
timal dispersal rates (Hamilton & May, 1977;
Comins et al., 1980; Motro, 1982a; Olivieri et al.,
1995; Olivieri & Gouyon, 1997). An optimal dis-
persal rate is the one that maximizes the occu-
pancy of the metapopulation (see Hamilton
& May, 1977; Comins et al., 1980). In our case,
it would correspond to a dispersal rate'd

lim
.

In agreement with several previous studies
(Comins et al., 1980; Olivieri et al., 1995; Olivieri
& Gouyon, 1997), we found that, when we as-
sume a "nite fecundity, selection could lead to
suboptimal situations where d*(d

lim
(Fig. 6).

Discussion

We studied the evolution of dispersal in a
metapopulation subject to extinction and re-
colonization. The kin selection model that we
used allowed us to derive an analytic formulation
of the ES dispersal rate. This expression formal-
izes the intuitive prediction that the ES dispersal
rate results from a balance between the e!ects of
the cost of dispersal, the probability of extinction,
the coe$cient of relatedness and the mode of
dispersal (i.e. the probability of common origin of
immigrants, /). Our analysis revealed some non-
intuitive results, in that factors usually known to
select for increased (or decreased) dispersal rates,
may under certain circumstances have the oppo-
site e!ect. For instance, increases in the cost of
dispersal do not necessarily select for decreases in
the dispersal rate. In particular, we developed
a kin selection argument to explain the fact (al-
ready noted by Comins et al., 1980) that when
some extinctions occur, the ES dispersal rate may
increase with the cost of dispersal, when c and the
average within-population relatedness are large.
Interestingly, we also found that higher related-
ness does not always select for higher dispersal
rates. When immigrants originate from the same
population (i.e. / is very high), the ES dispersal
could decrease with relatedness because of the
kin competition that occurs between immigrants.

In a second step, following Frank (1986) and
Taylor (1988), we studied the evolution of disper-
sal, where relatedness is a dynamical variable
depending on various parameters including the
dispersal rate itself. This approach allowed us to
study the e!ects of parameters that indirectly
a!ect the evolution of dispersal through their
e!ects on relatedness. For example, when the size
of the population and fecundity increase, the ES
dispersal rate generally decreases. Moreover, it
appears very clearly from our approach that the
mode of dispersal (i.e. the probability of common
origin) a!ects the evolution of dispersal both dir-
ectly and indirectly through its e!ect on related-
ness (see Fig. 4). Very interestingly these two
e!ects may, in certain cases, act in opposing di-
rections. First, higher values of / increase the
intensity of kin competition among dispersers.
This selects against dispersal. Second, higher
/ values increase the average within population
relatedness which in turn tends to increase d*.
The evolutionary outcome results from a balance
between these opposing e!ects. However, numer-
ical simulations show that higher /, very gener-
ally, selects for lower dispersal rates, d*.

Our results can be compared to those obtained
by Comins (1982), who found that the dispersal
pattern (i.e. island model vs. stepping-stone
model) did not a!ect the ES dispersal rate. In the
stepping-stone model, it does not pay to disperse
more than in the island model because the
strength of kin competition increases in both the
natal site and in the neighbouring site. In other
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words, there is a higher cost to be philopatric but
a lower bene"t to disperse. There is one major
di!erence between our model and that used by
Comins (1982) which stems from our assumption
that individuals from di!erent populations are
unrelated. By relaxing this assumption, Comins
(1982) considered yet another cost of dispersal
which arises from the relatedness between
philopatric and immigrant individuals. This dif-
ference may explain the fact that we do "nd an
e!ect of the mode of dispersal on the ES dispersal
rate. Our formulation of the mode of dispersal is
more related to, though di!erent than, the con-
cept of kin-structured migration (Fix, 1975, 1978;
Rogers, 1987) than to the restriction of dispersal
to neighbouring sites. As noted by Hedrick
& Levin (1984), there is a number of species in
which this kin-structured migration may occur.
For example, there is some evidence for this
type of migration in humans (Fix, 1978, 1981;
Smouse et al., 1981), monkeys (Chepko-Sade &
Olivier, 1979; Cheverud et al., 1978), voles
(Beacham, 1979) and acorn wood-peckers (Koenig
& Pitelka, 1979). Another special case of this type
of migration may occur in numerous plants
where migration involves multiseeded fruits, all
individuals emerging from the same fruit being
sibs. We therefore expect a higher e!ect than that
of /, since some immigrants (e.g. seeds of the
same fruit) will not only share the same popula-
tion of origin but the same mother as well. An
example closer to our de"nition of / is provided
by parasite life cycles, where the mode of dis-
persal / fully describes the di!erent type of trans-
mission from host to host. For example, in an
air-borne disease, /P0 and for a vector-borne
disease or a sexually transmitted disease, /P1.
This formalism may help to understand the con-
sequences of the type of transmission on parasite
evolution (Frank, 1994; Gandon, 1999).

The assumptions concerning the genetic sys-
tem could be easily modi"ed to study the evolu-
tion of dispersal of diploid and haplodiploid
organisms. Other assumptions concerning the
demography could also be relaxed (e.g. non-equal
densities, overlapping generations). This would
allow us to test the robustness of our predictions
under more realistic assumptions. Moreover, as-
suming a sexual mode of reproduction would
allow us to study whether a maternal or an o!-
spring control of dipersal a!ects the evolution of
dispersal. It has been shown that a parent}o!-
spring con#ict can emerge over the evolution of
dispersal (Hamilton & May, 1977; Motro, 1983;
Frank, 1986; Taylor, 1988). In this respect, it
would be particularily interesting to see how the
mode of dispersal and the extinctions of popula-
tions may a!ect this con#ict.

Some of the predictions of our model could be
tested either experimentally or using the com-
parative approach. For instance, the comparative
approach could be used to test the e!ect of the
mode of dispersal on the evolution of dispersal.
Our model would predict that species adopting
a kin structured type of migration (i.e. high /)
should tend to have lower dispersal rates. How-
ever, we are rather pessimistic because the di$-
culty in measuring the dispersal rate itself in
a large number of cases is likely to be a major
constraint for such tests.

An experimental approach, using host}para-
site systems in particular, could perhaps prove
more fruitful. A population of infected hosts can
be regarded as a metapopulation of parasites, the
death of hosts being analogous to parasite popu-
lation extinctions. Within that context, relevant
experiments may have already been performed.
Indeed, Ebert & Mangin (1999) recently con-
ducted a study on the relationships between
within-host growth rate, parasite virulence, host
extrinsic death rate and parasite dispersal rate in
a system composed of the crustacean Daphnia
magna and its microsporidian gut parasite Gluco-
ides intestinalis. The authors showed that parasite
transmission was positively correlated to host
extrinsic death rate. One possible interpretation
proposed by the authors, is that, increased host
mortality selects for increased parasite dispersal
rates. This interpretation is in agreement with
a classical result of models on the evolution of
dispersal, showing that higher extinction rates
select for increased dispersal. We believe that
more complex predictions of our model could be
tested using a similar experimental approach.

In a broader perspective, this work presents
a general model to study the evolution of altru-
ism in a metapopulation with extinctions and
recolonization. Both processes have been shown
to play a determinant role in the evolution of
social behaviours (Cohen & Eshel, 1976; Eshel,
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1977). This model could be easily modi"ed to
study the evolution of other life-history traits
such as parasite virulence (Frank, 1994, 1996a;
Gandon, 1998) or policing behaviours (Frank,
1995, 1996b).
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earlier draft of this paper. Steve Frank, Robert Holt,
Sally Otto and Minus van Baalen made valuable
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indebted to Kent Holsinger for helping us in improv-
ing and clarifying the manuscript. We are grateful
to Isabelle Olivieri for continuous advice and sup-
port. Two anonymous reviewers provided helpful
criticisms.
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APPENDIX A

Metapopulation Viability and Dispersal

Let us assume that, after dispersal, the meta-
population consists of two di!erent types of
patches: full and empty patches with respective
frequencies F

f
and 1!F

f
. The following recur-

rence equation describes the dynamics of such
a system:

F@
f
"(1!e)F

f
#r(eF

f
#(1!F

f
)),

where the prime indicates subsequent genera-
tions and r is the probability that a patch is
recolonized. At equilibrium F@

f
"F

f
"FK

f
. There

are two equilibria for this system, FK
f
"0 and

FK
f
"

r
r#e (1!r)

.

We modify the general model proposed by
Levins (1969, 1970) by considering that r depends
on the dispersal strategy. Let us assume that M is
the average number of immigrants in each popu-
lation:

M"(1!e)FK
fNn

(1!c)d.

If we further assume that each population re-
ceives exactly M immigrants we get

*If M51, r"1.
*If M(1, r"M.
The condition for the viability is (1!e)F
f
'1/¹,

if ¹ is the total number of populations in the
metapopulation (i.e. at least one population must
be present after extinctions for the metapopula-
tion to be viable). This leads to the following
condition on the dispersal rate:

d'd
ext

"

e¹
Nn(1!c) (1!e) (¹!1)

. (A.1)

When ¹PR,

d
ext

P

e
Nn(1!c) (1!e)

. (A.2)

The limit dispersal rate, d
lim

, is the rate above
which all the sites will be occupied after the
dispersal phase (i.e. r"1 or F

f
"1):

d5d
lim

"

1
Nn(1!c) (1!e)

. (A.3)

It follows from this derivation that three cases are
possible:

(1) If d'd
-*.

the metapopulation is viable and
all sites are occupied.

(2) If d
-*.

'd5d
ext

the metapopulation is
viable but only a fraction (FK

f
) of the meta-

population is occupied.
(3) If d(d

ext
the metapopulation is not viable.

In the present paper, we restrict our analysis to
the case (1).

APPENDIX B

The Inclusive Fitness

The "tness of an individual i in a population j of
age t is

= (d@
ij
, dt

j
)"=

1
#=

2
,

where =
1

and =
2

are the expected numbers of
progeny via philopatry or dispersal, respectively.

=
1
"n(1!e) (1!dt

ij
)p

philo
[dt

j
], (B.1)
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where

p
philo

[dt
j
]"

1
n(1!dt

j
#(1!e) (1!c)d)

is the probability that a philopatric o!spring
from a population of age t (that did not go
extinct) will win a breeding spot.

=
2
"=

2a
#=

2b
,

where =
2a

and =
2b

refer to the contribution to
"tness through dispersed o!spring that reach
a population that did not go extinct [with prob-
ability (1!e)] or an empty patch (with probabil-
ity e), respectively. In populations that did not go
extinct the dispersers compete with other immi-
grants as well as the residents. This leads to

=
2a
"ndt

ij
(1!e) (1!c)

=
+
t@/1

(F
t@
) p

disp
[dt@]), (B.2)

where p
disp

[dt{] is the probability that a dispersed
o!spring competing on a random population of
age t@ will win a breeding spot:

p
disp

[dt@]"

1
n(1!dt{#(1!e) (1!c) ( (1!/)d#/dt

j
))

.

The summation in eqn (B.2) gives the probability
that a dispersed o!spring competing on a ran-
dom population that did not go extinct will win
a breeding spot.

In newly colonized populations, dispersers
compete only with other immigrants and there-
fore

=
2b
"e

(1!c) dt
ij

( (1!/)d#/dt
j
)
. (B.2)

This leads to

=(dt
ij
, dt

j
)"n (1!e) ((1!dt

ij
)p

philo
[dt

j
]

#dt
ij
(1!c)

=
+

t{/1

(F
t{
) p

disp
[dt{]))

#e
(1!c)dt

ij
((1!/) d#/dt

j
)
. (B.4)
APPENDIX C

Marginal Gains in Fitness

The marginal gains in "tness from philopatry,
G

p
, and from dispersal, G

d
, can be derived from:

G
p
"!*=IF

1
"!

=
+
t/0

F
tC

d=
1

d dt
ij
D

"!

=
+
t/0

F
t C
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#
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1
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G
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t/0
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d dt
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t/0

F
tC

L=
2

Ldt
ij

#

L=
2

Ldt
j

R
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where

R
t
"

ddt
j

ddt
ij

(C.1)

is the relatedness between two random indi-
viduals in a population of age t (see Appendix D).
If we further assume that the dispersal rate indi-
viduals adopt does not vary with the age of the
populations (i.e. dt

ij
"d

ij
and dt

j
"d

j
) we get

G
p
"!
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1

Ld
ij

!

L=
1

Ld
j
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t/0
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t
R

t
), (C.2)
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"
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Ld
ij

#
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2

Ld
j
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+
t/0

(F
t
R

t
) (C.3)

It is important to note here that, even if dispersal
does not vary with the age of the population,
relatedness does vary with the age of the popula-
tion (Withlock, 1992). As we can see in eqs (C.2)
and (C.3), we will have to consider the average
relatedness, R, within populations given by

R"

=
+
t/0

(F
t
R

t
). (C.4)

At the "rst sight, it might appear surprising
to neglect the variations among populations of
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di!erent ages at the phenotypic level (i.e. dt
ij
"d

ij
)

but not at the genotypic level (R varies with t).
This apparent discrepancy can be justi"ed if
phenotypic variations are assumed to be very
small. However, variation of the genetic structure
cannot be neglected since the concept of related-
ness does not depend on phenotypic similarity
but on genetic identity.

The explicit derivation of eqs (C.2) and (C.3)
yields

G
p
"p[d] [(1!e)!Rk], (C.5)

G
d
"

e
d

[1!R/]#p[d] (1!c) (1!e)2

C
1!d#(1!R/) (1!c) (1!e)d

1!d#(1!c) (1!e)d D , (C.6)

where

p[d]"
1

1!d#(1!e) (1!c)d

is the probability that an o!spring competing in
a non-extinct population will win a breeding spot
multiplied by the number of o!spring and

k"
(1!e) (1!d)

1!d#(1!c) (1!e)d

is the probability that a random individual is
native to its patch.

APPENDIX D

The Calculation of Relatedness

Since we assume haploidy and asexuality, R is
equivalent to the coe$cient of consanguinity,
f (Michod and Hamilton, 1980; Taylor, 1988). It is
important to note that relatedness is measured
among juveniles after reproduction and before
dispersal because only juveniles disperse and
compete against each other.

D.1. INFINITE FECUNDITY

Whitlock and McCauley (1990) developed an
analytic formulation of the coe$cient of consan-
guinity in the population recolonized t genera-
tions ago, f

t
. Using a similar recurrence equation

we get

f
t
"M

1
#M

2
((1!m)2 f

t~1
#m2c),

where M
1

and M
2

are the probabilities that two
individuals in the population are or are not sibs,
respectively. When fecundity is very large

M
1
"

1
N

,

M
2
"

N!1
N

,

m is the immigration rate,

m"

(1!c) (1!e)d
1!d#(1!c) (1!e)d

.

We assume that individuals of di!erent popula-
tions are not related and therefore immigrants
may be related only if they have emigrated from
the same population. c is the probability of ident-
ity of two immigrants and is equal to /R.

For newly founded populations we have

f
0
"R

0
"M

1
#M

2
c .

At the scale of the metapopulation this leads to
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,

R@"eR
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At equilibrium this yields

R"

M
1

1!M
2
((1!m)2(1!e)#/((1!e)m2#e))

.

(D.1)
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D.2. FINITE FECUNDITY

Using a similar recurrence equation we get

f
t
"M

1
#M

2
(P

p
f
t~1

#P
m
c),

where M
1

and M
2

are the probabilities of being
sibs or non-sibs, respectively.

Di!erent cases will have to be considered de-
pending of the number of individuals, N@, com-
peting on non-extinct sites.

N@"immigrants#philopatric"z#Nn(1!d),

where z is the number of immigrants per genera-
tion in each population, given by

z"M"Nn(1!e) (1!c)d,

where M is given in A:

if N@'N: M
1
"

n!1
Nn!1

, M
2
"

n(N!1)
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;

if N@(N: M
1
"

Nn
N@

!1

Nn!1
, M

2
"

nAN!

N
N@B

Nn!1
.

P
p

and P
m

are the probabilities of choosing two
di!erent philopatric individuals or two di!erent
immigrants,

P
m
"m

Nn(1!c) (1!e)d!1
Nn(1!d#(1!c) (1!e)d)!1

,

P
p
"(1!m)

Nn(1!d)!1
Nn(1!d#(1!c) (1!e)d)!1

,

We assume that individuals from di!erent popu-
lations are not related and therefore immigrants
may be related only if they had emigrated from
the same population which yields c"/R.

For newly founded populations we again have

f
0
"R

0
"M0

1
#M0

2
c ,

where M0
1

and M0
2

are the probabilities of being
sibs or non-sibs in newly founded populations,
respectively. Di!erent cases need to be con-
sidered depending on the number of individuals,
z, competing on empty patches

if z'N: M0
1
"

n!1
Nn!1

, M0
2
"

n(N!1)
Nn!1

;

If z(N: M0
1
"

Nn/z!1
Nn!1

, M0
2
"

n(N!N/z)
Nn!1

.

At the scale of the metapopulation, this leads to

R@"
=
+
t/0

R
t
"

=
+
t/0

[F
t
f
t
],

R@"eR
0
#(1!e)

=
+
t/1

][F
t~1

[M
1
#M

2
(P

p
R

t~1
#P

m
c)]],

R@"eR
0
#(1!e) [M

1
#M

2
(P

p
R#P

m
c)].

At equilibrium, this yields

R"

e(M0
1
!M

1
)#M

1
1!/eM0

2
(1!e)M

2
(P

p
#/P

m
)
. (D.2)
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