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We study victim–exploiter coevolution in a spatially heterogeneous island model. In each species, fitness consequences of between-

species interactions are controlled by a single haploid diallelic locus. Our emphasis is on the conditions for the maintenance of

genetic variation, the dynamic patterns observed, the extent of local adaptation and genetic differentiation between different

demes, and on how different parameters (such as the strength and heterogeneity in selection, migration rates, and the number of

sites) affect the dynamic and static behavior of the system. We show that under spatially homogeneous selection the maintenance

of genetic variation is possible through asynchronous nonlinear dynamics where the allele frequencies in a majority of demes

quickly synchronize but the rest do not. Spatially heterogeneous selection can maintain genetic variation even if migration rates

are maximal. This happens in an oscillatory way. Genetic variation is most likely to be maintained at high levels if the heterogeneity

in selection is large. If there are some restrictions on migration, genetic variation can be maintained at a stable equilibrium. This

behavior is most likely at intermediate migration rates. In this case, the system can exhibit high spatial subdivision as measured

by FST values but relatively low local adaptation.
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Between-species interactions are ubiquitous in nature and are

thought to result often in strong natural selection and reciprocal

evolution (Futuyma and Slatkin 1983; Thompson 1994, 2005;

Wade 2007). Victim–exploiter coevolution describes situations in

which one species (exploiter) benefits at a cost to another (vic-

tim). Under such interactions the exploiter profits from strength-

ening the between-species interaction whereas the victim prof-

its from weakening the interactions. One particularly important

type of victim–exploiter system is represented by host–parasite

species pairs. Evolutionary dynamics of host–parasite interactions

have attracted a great deal of attention for several reasons. Host–

parasite interactions are interesting in their own right because they

concern a large part of biodiversity (de Meeus et al. 1998); they

result in intriguing evolutionary and ecological processes, such as

the evolution of virulence (Frank 1996), the evolution of offense–

defense systems, e.g., the vertebrate immune system (Garrigan

and Hedrick 2003), and the generation of patterns of local adapta-

tion (Kaltz and Shykoff 1998; Kawecki and Ebert 2004; Greischar

and Koskella 2007; Hoeksema and Forde 2008). These questions

are central in public or animal health issues. Host–parasite inter-

actions have also been involved in the evolution of several key

traits of living organisms, and in particular in the evolution of

sex (e.g., Hamilton et al. 1990; Howard and Lively 1994; West

et al. 1999; Busch et al. 2004; Otto and Nuismer 2004), ploidy

level (e.g., Nuismer and Otto 2004), and gene expression (e.g.,

Nuismer and Otto 2005).

Victim–exploiter interactions often result in complex and

nonlinear coevolutionary dynamics that are difficult to understand
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on the basis of verbal reasoning and generalizations from data.

Mathematical modeling becomes an important tool for achiev-

ing better insights. A common approach for describing between-

species interactions in a mathematical model is to assume that fit-

nesses depend on genetic composition of the interacting species,

i.e., that fitnesses are frequency-dependent. The questions ad-

dressed using mathematical models of frequency-dependent se-

lection include the conditions for the maintenance of genetic vari-

ation without mutation, the levels of genetic variation maintained,

whether the system evolves toward an equilibrium state or some

dynamic regime (e.g., cycles or chaos), and which species can be

viewed as a “winner” of antagonistic interactions (Mode 1958;

Leonard and Czochor 1980; May and Anderson 1983; Frank

1991a, 1996; Gavrilets 1997; Gavrilets and Hastings 1998; Kopp

and Gavrilets 2006). When spatial subdivision is important, ma-

jor questions include the extent of synchrony/asynchrony in the

dynamics between different spatial locations and the levels of

genetic differentiation (Frank 1991b; Gandon et al. 1996; Lively

1999; Nuismer et al. 2000; Gandon and Michalakis 2002; Thrall

and Burdon 2002; Nuismer 2006; Nuismer and Gandon 2008).

Additional questions that have received a lot of attention in the

host–parasite literature concern the levels of local adaptation,

and the effects of the type of between-species interactions (e.g.,

“gene-for-gene” vs. “matching alleles,” Frank 1993; Agrawal and

Lively 2002; Nuismer 2006) and of genetics of underlying char-

acters (e.g., major vs. minor genes, effects of multiple alleles and

multiple genes).

Spatial subdivision and spatial heterogeneity in environmen-

tal conditions (abiotic and biotic) are characteristic of most bio-

logical systems, including host–parasite systems. The importance

of these effects is stressed in the influential geographic mosaic the-

ory of coevolution (Thompson 1994, 2005; Gomulkiewicz et al.

2000), which holds that genotype-by-genotype-by-environment

interactions drive coevolutionary changes as species interact with

one another across heterogeneous landscapes. One of the aims

of the geographic mosaic theory is to understand why some of

these interactions can persist over long periods of time and how

they shape coevolutionary dynamics. Some aspects of the geo-

graphic mosaic theory have been addressed using a variety of

analytical and numerical models (e.g., Gandon et al. 1996; Lively

1999; Nuismer et al. 2000; Gandon and Michalakis 2002; Nuismer

2006).

The goal of this article is to investigate a relatively simple

model of antagonistic coevolution in an island model with spa-

tially heterogeneous selection (selection mosaic). Simplicity of

the model implies that a relatively thorough analysis becomes

feasible. This is in contrast to most previous works that used

more complex models but typically focused on the effects of only

one or two parameters (usually, the migration rates). The price of

simplicity is, of course, biological realism. Our goal at this stage

however is not to make precise predictions for concrete biological

systems but rather to develop a better intuition about the effects

of different factors that have been always present in the models

but have remained largely unexplored theoretically. A better intu-

ition gained from studying simple models can be used for deeper

understanding of the previous empirical and modeling work and

for attacking more complex and realistic models.

Our model is closely related to the single-deme models stud-

ied by Seger (1988) and Gavrilets and Hastings (1998) and gen-

eralized later by Nuismer et al. (2000) and Gandon (2002) for

the case of spatially structured population. Simultaneously, our

model can be viewed as a first step toward generalizing the clas-

sical Levene model of selection in a spatially heterogeneous en-

vironment (Levene 1953, Gavrilets 2004, Chap.7) for the case

of coevolutionary interactions. We start by defining the model.

Then we present analytical and numerical results on its dynamics

and biologically relevant characteristics. At the end, we discuss

biological significance of our results.

Model
We consider a host and a parasite species (or, more generally, a

victim and an exploiter species) inhabiting a system of n sites

(demes) connected by migration. Population sizes are sufficiently

large to neglect the effects of random genetic drift. Generations

are discrete and nonoverlapping. Both species are haploid and

differ with regard to a single diallelic locus with alleles A and

a in the host and alleles B and b in the parasite. Host allele

A and parasite allele B and host allele a and parasite allele b

are “complementary” (in a sense to be defined below). Before

selection the frequencies of alleles A and a at site i are hi and 1 −
hi and those of alleles B and b are pi and 1 − pi.

SELECTION

Within each species selection is symmetric frequency-dependent.

Fitnesses (viabilities) being given by linear functions of the geno-

type frequencies in the other species

wA,i = 1 − αi pi , wa,i = 1 − αi (1 − pi ), (1)

wB,i = 1 − βi (1 − hi ), wb,i = 1 − βi hi , (2)

where 0 < αi, βi < 1 are the coefficients measuring the sensitivity

of fitness of each species at site i to changes in allele frequencies in

the other species. These coefficients also measure the maximum

possible strength of selection (observed when one of the alleles is

close to fixation). For brevity, we will call them selection coeffi-

cients. In the host species, each genotype suffers the reduction in

fitness when its “complementary” genotype in the parasite species

increases in frequency. In the parasite species the opposite hap-

pens: each genotype benefits when its “complementary” genotype

EVOLUTION DECEMBER 2008 3 1 0 1



S. GAVRILETS AND Y. MICHALAKIS

in the host species increases in frequency. This model also implies

that there are no fitness differences between the two genotypes

of each species in a deme not related to their interactions with

the other species. Whenever all αi’s are equal and βi’s are equal

we will say that selection is homogeneous in space, and that it

is heterogeneous otherwise. We emphasize that the fitness of a

given genotype, however, may vary in space even in the case of

homogeneous selection, because it depends on the frequencies of

genotypes in the antagonistic species that can vary in space. In

terms of the geographic mosaic theory of coevolution (Thompson

2005), coefficients α and β capture genotype-by-genotype inter-

actions in fitness whereas the fact that these coefficients vary

in space accounts for the “environment” part of genotype-by-

genotype-by-environment interactions.

The allele frequencies after selection within deme i are

hs
i = wA,i

w̄h,i
hi , (3)

ps
i = wB,i

w̄ p,i
pi , (4)

where

w̄h,i = wA,i hi + wa,i (1 − hi ), (5)

w̄ p,i = wB,i pi + wb,i (1 − pi ), (6)

are the average fitnesses of the species in deme i.

MIGRATION

Migration occurs after selection. We assume migration to be uni-

form in space and to follow the island model, so that all immigrants

come through a common migrants pool. Assuming that all demes

contribute equally to the migrant pool, the allele frequencies in

the migrant pool are

h̄ =
∑

hs
i

n
, (7)

p̄ =
∑

ps
i

n
. (8)

Assuming that the proportion of migrants coming into each deme

is constant (mh for hosts and mp for parasites), the allele frequen-

cies after migration are

h′
i = (1 − mh)hs

i + mhh̄, (9)

p′
i = (1 − m p)ps

i + m p p̄. (10)

Reproduction occurs after migration and does not change allele

frequencies. Therefore, the allele frequencies in the next genera-

tion are the same as h′
i and p′

i.

Results
Here we describe analytical and numerical results on the behavior

of our model as specified by dynamic equations (1–5). This dy-

namical system has always four monomorphic equilibria at which

the frequencies of alleles A and B are (0,0), (0,1), (1,0), and (1,1),

respectively. Also, there always exists a symmetric polymorphic

equilibrium (1/2,1/2) at which all alleles have frequency 1/2. Be-

low we describe our results in different sections, depending on

the extent of migration and on whether selection is homogeneous

or heterogeneous in space. In all cases, we examine the stability

of the four monomorphic equilibria and of the symmetric poly-

morphic equilibrium and characterize the corresponding dynamic

regimes.

Besides looking at whether genetic variation is maintained

and interpreting general dynamics of allele frequencies, we will

also analyze genetic differentiation and local adaptation. The level

of genetic differentiation between different demes is measured by

coefficient FST

FST = var(x)

x(1 − x)
, (11)

where x and var (x) are the average and variance of the frequencies

of a particular allele in a particular species across all n demes.

Following previous work (e.g., Gandon et al. 1996; Gandon and

Michalakis 2002; Nuismer and Gandon 2008), we define the level

of local adaptation � of the species (host or parasite) as the

expectation (across all demes) of the difference between its fitness

in the population of origin, whome, and its average fitness, w̄away,

over remaining n − 1 demes

� = E{whome − w̄away}. (12)

The average fitness w̄away is measured using the current genetic

composition of the antagonistic species in the other demes. Note

that substantial local adaptation requires substantial genetic dif-

ferentiation. For the model under consideration, the expected local

adaptation of hosts and parasites can be written as

�h = n

n − 1
cov(hi , wA,i − wa,i ), (13)

�p = n

n − 1
cov(pi , wB,i − wb,i ), (14)

where the covariances are computed over all n demes (see Ap-

pendix and also Nuismer and Gandon 2008 for a more general

treatment). With spatially homogeneous selection (i.e., with αi =
α, βi = β for all i), the above equations simplify to

�h = −2α
n

n − 1
cov(hi , pi ), (15)

�p = 2β
n

n − 1
cov(hi , pi ). (16)
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Equations (15) and (16) show that host local adaptation is a neg-

ative function of the covariance of host and parasite allele fre-

quencies, whereas parasite local adaptation is a positive function

of this covariance. This makes intuitive sense, because the fitness

of a given host genotype decreases as the frequency of the com-

plementary parasite genotype increases; thus if host and parasite

genotype frequencies are positively correlated we would expect

hosts to “suffer” and parasites to benefit.

In performing numerical simulations with spatially heteroge-

neous selection, we will draw the values of parameters αi and βi

for each deme randomly and independently from uniform distri-

butions on intervals [αmin, αmax] and [βmin, βmax]. We will interpret

coefficients αmax and βmax as characterizing the overall strength of

selection. We will interpret the relative differences κα = (αmax −
αmin)/αmax and κβ = (βmax − βmin)/βmax as measures of spatial het-

erogeneity of selection (0 ≤ κα, κβ ≤ 1). Except where explicitly

noted otherwise, our simulations ran for 5000 generations.

Our major qualitative results are summarized in Table 1. The

details of our analytical methods are given in the Appendix.

NO MIGRATION (mh = mp = 0)

In the case of an isolated deme, all four monomorphic equilibria

are saddle points, whereas the polymorphic equilibrium is an

unstable focus. On the (p, h)-phase plane, the resulting dynamics

are represented by trajectories that spiral out approaching the

boundaries closer and closer, with only one species polymorphic

at a time (Fig. 1A,B; Seger 1988; Gavrilets and Hastings 1998).

Unless selection is very weak, genetic variation disappears on the

time scale of few hundred to few thousand generations (Fig. 1C).

Note that if we allow for recurrent mutation, genetic variation

will be maintained and the system will evolve toward a mutation–

selection balance cycle positioned close to the boundaries of the

(p, h)-phase plane (Gavrilets and Hastings 1998).

Table 1. Summary of major qualitative results. “U” stands for locally unstable and “S” stands for locally stable equilibria; “mono” and

“poly” stand for the monomorphic and the symmetric polymorphic equilibria.

Condition Mono Poly Dynamic patterns and features
No migration U U Quick loss of variation via growing oscillations
Homogeneous selection U U (1) synchronization and quick loss of variation, or

(2) asynchronous nonlinear dynamics, maintenance
of variation, substantial genetic differentiation, and
Low local adaptation

Maximal migration U U Stable cycling; low variation
General case U (1) S for interme- (1) maintenance of variation, no genetic differentia-

diate migration, tion, or
(2) U otherwise (2) asynchronous nonlinear dynamics, maintenance

of variation, substantial genetic differentiation, and
some local adaptation

HOMOGENEOUS SELECTION (α i = α, βi = β),

ARBITRARY MIGRATION

When selection is homogeneous in space, intuition for the island

model suggests that allele frequencies in different demes will

quickly synchronize and the behavior of the system will become

similar to that in an isolated deme case considered above (Fig. 1).

This is indeed what one often sees in numerical simulations.

However, simulations also show that there is a different regime

in which the system maintains genetic variation in a nonequi-

librium fashion so that the average allele frequencies (Fig. 2A),

FST values (Fig. 2B), and the degree of local adaptation (Fig. 2C)

continuously fluctuate. In this regime, the majority of allele fre-

quencies are synchronized (i.e., equal) but a few remaining are

not. For example, in the case shown in Figure 2, 13 of 16 demes

were synchronized whereas each of the three remaining demes

followed its own dynamics.

To understand the dynamics of FST and local adaptation in

these cases, consider a situation in which host populations are

highly differentiated, i.e., host’s FST is large, whereas parasite

populations have very similar allele frequencies, i.e. parasite’s

FST is very small. The host is then facing spatially homogeneous

selection, precisely because parasite’s FST is close to 0, and there-

fore host populations will tend to homogenize, leading to low

host’s FST. At the same time, because host’s FST is large, para-

sites are facing spatially heterogeneous selection, and thus their

populations will diverge, leading to large parasite’s FST. Local

adaptation requires that both species exhibit spatial differentia-

tion. It is thus close to 0 when either species has a very small

FST, and reaches its maximal absolute value soon after the FST

curves of the two species cross. Host local adaptation is positive

whereas host FST increases. During this phase each host popula-

tion is adapting to its sympatric parasite population. When host

FST decreases, host local adaptation decreases as well, precisely
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Figure 1. The dynamics in a single deme. (A) The dynamics of p (blue) and h (red) in time. (B) The corresponding dynamics on the (p,

h)-phase plane. The trajectory spirals counter-clock wise. (C) The average time for an allele frequency to reach 10−4 with different α and

β changing between 0 and 1. Random uniform initial conditions. Twenty runs for each parameter combination. For the smallest values

of α and β used, the allele frequencies have not reached 10−4 within the time span used (104 generations).

because host populations have more and more similar genetic

compositions. The reverse arguments hold for the parasite.

Asynchronous behavior maintaining genetic variation re-

quires significant initial variation in allele frequencies between

demes and is typically observed when migration rates are small,

selection is intermediate, and the number of demes is large (see

Fig. 3). Larger migration requires stronger selection. The differ-

ences in migration rates between the species do not affect these

conclusions strongly (see Fig. 4).

Genetic differentiation observed in asynchronous regimes

can be rather substantial (Fig. 5A). In contrast, local adaptation

remains relatively slight—at the level of 10−3 to 10−4 when aver-

aged across all demes (Fig. 5B) and at the level of a few percent

for an “average” pair of demes (Fig. 5C). [The latter interpretation

assumes that the average of the absolute values of pairwise �’s

can be roughly approximated by the standard deviation of �’s.]

These conclusions are true for both species.

MAXIMUM MIGRATION (mh = mp = 1),

HETEROGENEOUS SELECTION

If all individuals come to each deme via a common migrants pool

(as in the classical Levene (1953) model), the allele frequencies

become the same across all demes in one generation. Therefore

the system state is completely characterized just by two dynamic

variables: the average frequencies of alleles A and B in the mi-

grants pool that we denote as h and p. The dynamic equations

are

h′ = 1

n

∑
i

h(1 − αi p)

h(1 − αi p) + g(1 − αi q)
, (17)

p′ = 1

n

∑
i

p(1 − βi g)

p(1 − βi g) + q(1 − βi h)
, (18)

where q = 1 − p and g = 1 − h. As before, all four monomor-

phic equilibria are saddle points and the symmetric polymorphic

equilibrium is an unstable focus. However, now analytical deriva-

tions (see the Appendix) indicate that the system evolves to a

stable limit cycle so that in an infinitely large population genetic

variation can be protected (see Fig. 6).

For many parameter values, the cycle gets very close to the

boundaries of the phase-plane with allele frequencies reaching

very low values that from the practical point of view implies

the loss of genetic variation. Figure 7 illustrates the effects of

parameters on the probability that all allele frequencies stay above

a certain threshold (here, arbitrarily set at 10−4) for a relatively

long period of time (here, 104 generations). The figure shows
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Figure 2. Nonequilibrium dynamics under spatially homoge-

neous selection. (A) The average allele frequencies. (b) FST values.

(C) The degree of local adaptation �. Parameters: α = β = 0.5, mh =
mp = 0.03, n = 16. Red lines, host. Blue lines, parasite. Both FST

and � values are computed before selection.

that the most important condition for the maintenance of genetic

variation is significant heterogeneity in selection (κ = 0.75 or

1.00). There is also a slight trend toward increasing the probability

of the maintenance of genetic variation with the number of demes

n. This trend is probably explained by the fact that with large n the

actual range of variation of α’s and β’s and the range of variation

of initial allele frequencies (which are chosen randomly from a

uniform distribution) slightly increase. The dark square in the

bottom left corner in all graphs is an artifact of the method: with

very small values of α’s and β’s, 10,000 generations of selection

is not enough to reduce allele frequencies significantly. In the

Appendix we use an analytical method to identify a coefficient

ρ predicting the closeness of trajectories of the limit cycle to the

axes in terms of selection coefficients.

LIMITED MIGRATION (mh < 1, mp < 1),

HETEROGENEOUS SELECTION

When selection is spatially heterogeneous and there are some re-

strictions on migration, a qualitatively new behavior is possible:

genetic variation can be stably maintained at the symmetric poly-

morphic equilibrium with all allele frequencies at 1/2. Analytical

results for the two-deme case show that this stability is most likely

at intermediate migration rates (see the Appendix). Our numerical

simulations support the generality of this conclusion (Fig. 8). Note

that although the symmetric polymorphic equilibrium is always

unstable for very small migration rates (on the order of 0.001),

the small white areas in the bottom left corner of the graphs are

not always visible at the resolution level used.

If the system is at the symmetric polymorphic equilibrium,

there is no genetic heterogeneity (FST = 0) and both �h and

�p are zero. If however the system does not synchronize, the

allele frequencies keep changing in an oscillatory way that can

result in substantial FST values (Fig. 9A). As expected, genetic

heterogeneity grows with increasing selection and decreasing mi-

gration. The measures of local adaptation �h and �p fluctuate

around zero (Fig. 9B), but the magnitude of fluctuations grows

with the strength of selection and decreasing migration (Fig. 9C).

This implies that at each particular moment of time, the value of

� for one species can be substantially larger than that for another

species.

Discussion
Our motivation in this article was to study both analytically and

numerically a relatively simple population-genetic model of host–

parasite interactions in a spatially subdivided and heterogeneous

environment. Our emphasis was on the conditions for the main-

tenance of genetic variation, the dynamic patterns observed, the

extent of genetic differentiation between different demes, and on

how different parameters (such as the strength and heterogeneity

in selection, migration rates, and the number of demes) affect

the dynamic and static behavior of the system. We also looked

at measures of local adaptation that have been the focus of many

theoretical studies using similar models. Our overall goal was to

extend the scope of recent modeling work (discussed throughout

the paper) on various aspects of the geographic mosaic theory of

coevolution.

Coevolutionary models necessarily include components

specifying genetics, spatial structure, environment, and demogra-

phy, and a large number of parameters specifying these compo-

nents. The more realistic the model, the more difficult its analysis.

As a consequence, studies of many coevolutionary models typ-

ically focus on the effects of only one or two parameters (such

as the migration rates) whereas all other parameters remain fixed

in numerical simulations and, thus, their influence on the model
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Figure 3. The probability that for randomly chosen initial allele frequencies the system does not synchronize under spatially homoge-

neous selection for different α and β changing between 0 and 1. Grayscale from zero (white) and one (black). Migration rates equal for

host and parasite (mh = mp = m). First, second, third, and fourth rows are for n = 2, 4, 8, and 16 demes, respectively. First, second, third,

and fourth columns are for m = 0.01, 0.03, 0.05, and 0.07, respectively. Ten runs for each parameter combination with initial conditions

chosen randomly and independently from a uniform distribution on [0, 1].

dynamics remain unknown. As a result, the generality of the ef-

fects observed cannot be assured even within a particular model

with well-defined components. Here, we used a complementary

approach: use a simple, idealized model but study it as extensively

as possible, with the hope that the intuition we would gain from

such an analysis may help to both better understand coevolution-

Figure 4. The probability that for randomly chosen initial allele frequencies the system does not synchronize under spatially homoge-

neous selection for different migration rates mh and mp changing between 0 and 0.1. Grayscale from zero (white) and one (black). (A)

α = 0.25. (B) α = 0.50. (C) α = 0.75. (D) α = 1.00. n = 16, β = α. Ten runs for each parameter combination with initial conditions chosen

randomly and independently from a uniform distribution on [0, 1].

ary dynamics and better interpret the results of more complex

models.

In the model under consideration, it is known that genetic

variation cannot be stably maintained in an isolated deme with-

out mutation (Seger 1988; Gavrilets and Hastings 1998). In a

single deme, allele frequencies experience growing oscillations
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Figure 5. Spatial subdivision and local adaptation of host species under spatially homogeneous selection for different strengths of

selection α and migration rates m (equal for both species) with n = 16 demes. β = α. (A) Average FST values. (B) Average local adaptation

�. (C) The standard deviation of local adaptation. All values are based on the last 250 generations over the runs resulting in the

maintenance of genetic variation. Ten runs for T = 5000 generations for each parameter combination. For the parasite, the behavior of

the average FST values and the standard deviation of local adaptation is very similar to those in Figures (A) and (C), whereas that of the

average local adaptation is described by a mirror image of Figure (B).

eventually resulting in one allele being fixed in each species.

Note that if instead of difference equations we approximated the

dynamics by differential equations, the resulting model would

predict the existence of neutrally stable cycles (Gavrilets and

Hastings 1998). However, in the presence of random genetic drift,

genetic variation would still be quickly lost even in a continuous-

time model. With mutation genetic variation will be maintained

in a dynamic mutation–selection balance cycle (Gavrilets and

Hastings 1998).

When considering a subdivided population it is important to

distinguish the case in which selection is homogeneous in space

from the case in which it is heterogeneous. In the case of host–

parasite interactions, where fitnesses of genotypes of one species

Figure 6. The dynamics with maximum migration. Shown is a

single trajectory on the (p, h)-phase plane in a random deme.

Parameters: n = 8, αmax = βmax = 0.75, κmin = κmin = 1.0. The

discontinuity in the trajectory corresponds to the change in the

first generation. The trajectory spirals counterclockwise.

depend on the frequencies of genotypes of the other species, we

must be very clear on what the term homogeneous implies—and

what it does not. Here, homogeneous selection means that the se-

lection coefficients, i.e., parameters αi and βi of our model, have

the same value in all demes. Because fitnesses of genotypes of

one species depend on genotype frequencies of the other species

and because the latter may vary across space, however, fitnesses of

host and parasite genotypes may vary across space even in the case

of homogeneous selection. Such heterogeneity in fitness may help

to maintain polymorphism and population differentiation as has

been observed in simulation studies using more complex stepping-

stone systems and/or more complex genetics and/or genetic drift

(Gandon et al. 1996; Lively 1999; Gandon and Michalakis 2002).

All these factors have been argued to promote the maintenance of

genetic variation in host-parasite systems. For example, isolation

by distance which is always present in stepping-stone models is

known to reduce the homogenizing effect of migration relative

to that in island models. Similarly, genetic drift can contribute to

maintaining polymorphism by desynchronizing different popula-

tions. Polymorphism is also promoted by more complex genetics.

For example, Seger (1988) showed that either increasing the num-

ber of alleles per locus, or increasing the number of loci involved

in the host–parasite recognition may lead to genotype frequency

cycling in single population systems that would not sustain poly-

morphism otherwise (see also Kawecki 1998).

However, similar behavior, that is the maintenance of ge-

netic variation under spatially homogeneous selection, can be

observed in our much simpler island model. This suggests that

isolation by distance, genetic drift, and complex genetics are not

necessary for the maintenance of variation in host–parasite sys-

tems. Our detailed numerical study shows that the maintenance
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Figure 7. The probability that for randomly chosen initial allele frequencies and randomly chosen coefficients α and β the system

maintains genetic variation for 104 generations with maximum migration rates. Grayscale from zero (white) and one (black). αmax and

βmax change between 0 and 1. αmin = (1 − κ) αmax, βmin = (1 − κ) βmax where κ is a parameter measuring heterogeneity in selection. First,

second, third, and fourth rows are for n = 2, 4, 8, and 16 demes, respectively. First, second, third, and fourth columns are for κ = 0.25, 0.50,

0.75, and 1.00, respectively. Ten runs for each parameter combination with initial conditions were chosen randomly and independently

from a uniform distribution on [0,1].

of genetic variation happens through asynchronous nonlinear dy-

namics where the majority of demes quickly synchronize but the

rest do not. This regime requires substantial initial variation in

allele frequencies and is more likely to be observed if migration

rates are small, the strength of selection is intermediate, and the

number of demes is large. It can result in substantial FST values

but only in relatively low values of the measures of local adapta-

tion �h and �p. If the above requirements are not satisfied, allele

frequencies quickly synchronize between different demes, and

after that the system exhibits the same behavior as in an isolated

deme. That is, genetic polymorphism is not maintained.

Earlier Sasaki et al. (2002) found that a similar asynchronous

nonequilibrium behavior can be exhibited by a single deme in a

different gene-for-gene haploid model of coevolution in a spa-

tially homogeneous island model. In Sasaki et al. (2002) both

the number of demes and migration rates were much higher than

used here (n = 10, 000 and mh = mp = 0.2, respectively). The

fact that genetic variation can be preserved under spatially ho-

mogeneous selection if migration is sufficiently small is analo-

gous to that in classical models of constant disruptive selection

(Gavrilets (2004), Chap.7). This happens when the correspond-

ing dynamic system allows for multiple attractors within a single

deme. [In our case, “attractors” differ in the phase of fluctuations.]

Then if different demes start with different allele frequencies they

may experience somewhat divergent selection so that in isolation

they would evolve to different attractors. If migration is weak

relative to selection, it is not able to overcome spatial hetero-

geneity in selection (induced by initial differentiation in allele

frequencies) and genetic differentiation will be preserved. With

isolation by distance (e.g., as present in stepping-stone models),

asynchronous fluctuations can result in rather interesting dynamic

spatial patterns (Sasaki et al., 2002). We note that stable main-

tenance of variation under spatially homogeneous selection was

not observed in Nuismer et al., (2000) who used a stepping-stone

system. The reason for this is probably that selection was weak

in their simulations.

We note that in general nonequilibrium dynamics are not

required for the maintenance of spatial structure in genotype
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Figure 8. The probability that for randomly chosen coefficients α and β the symmetric polymorphic equilibrium is locally stable with

spatially heterogeneous selection and limited migration. Grayscale from zero (white) and one (black). mp and mh change between 0.0

and 0.1. First, second, third, and fourth columns are for αmax = 0.25, 0.50, 0.75, and 1.00, respectively. First, second, third, and fourth rows

are for n = 2, 4, 8, and 16, respectively. Maximum heterogeneity in selection (κ = 1), βmax = αmax. Twenty runs with randomly chosen α

and β and initial conditions for each parameter combination.

frequencies under spatially homogeneous selection. The same

can happen when the system evolves to a migration-selection

equilibrium. For example, spatial structure will be maintained

in the diploid version of the matching allele model studied by

Figure 9. Spatial subdivision and local adaptation of the host species under spatially heterogeneous selection for different strengths of

selection αmax and migration rates m (equal for both species) with n = 16 demes. Maximum heterogeneity in selection (κ = 1), βmax =
αmax. (A) Average FST values. (B) Average local adaptation. (C) The standard deviation of local adaptation. All values are based on the last

250 generations over the runs resulting in the maintenance of genetic variation. Ten runs for T = 5000 generations for each parameter

combination. The corresponding graphs for the parasite species look similar.

Nuismer (2006). This model is characterized by strong under-

dominance in the host population. Therefore if initially different

demes are close to fixation of alternative alleles and migration is

small enough, genetic differentiation will be preserved in the same
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Figure 10. The dynamics of the average allele frequencies, FST’s

and the measures of local adaptation in the asymetric model (11).

Blue lines: parasite, red lines: host. Parameters ζ’s and ξ’s were

chosen randomly and independently from a uniform distribution

on [− 0.1, 0.1]. Other parameters: n = 16, mh = 0.01, mp = 0.05,

αmax = βmax = 0.75, κ = 1.00.

way as in models of underdominant selection (Svirezhev 1968;

Karlin and McGregor 1972; Gavrilets 2004, Chap.7). This shows

that Nuismer’s (2006) conclusion that spatially heterogeneous se-

lection “is required for spatial structuring of allele frequencies

to be maintained indefinitely” (p.26) is justified only within the

weak-selection strong-migration approximation he used.

Spatially heterogeneous selection can maintain genetic vari-

ation even if migration rates are maximal. This happens in an

oscillatory way with allele frequencies periodically reaching low

values. Genetic variation is most likely to be maintained at high

levels relatively long if the heterogeneity in selection is large. In-

creasing the number of demes and the strength of selection both

promote the maintenance of variation however the effect of these

two factors is relatively small.

If selection is spatially heterogeneous and there are some

restrictions on migration, a different type of behavior is possible:

the maintenance of genetic variation at a stable equilibrium with

all allele frequencies at 1/2. This kind of behavior, which was

already observed by Nuismer et al. (2000) in a similar stepping-

stone model, is most likely at intermediate migration rates.

The reason why intermediate migration rates are required for

the stable maintenance of genetic variation is as follows. If mi-

gration rates are very high, different demes synchronize and the

system evolves in a cyclic way (as illustrated in Fig. 6). If migra-

tion rates are very low, each deme evolves largely independently

exhibiting the tendency to approach the boundaries of the unit

square in a cyclical way as illustrated in Figure 1. The effects of

low migration are felt only when an allele frequency approaches 0

or 1 very closely. Then migration will only result in the allele fre-

quency moving slightly toward 1/2 which would maintain cycling

but no stabilization at 1/2 will be observed.

Overall, spatial heterogeneity of the environment (translated

in a spatial heterogeneity of selection coefficients) dramatically

affects the evolutionary dynamics by greatly simplifying the main-

tenance of genetic variation and amplifying genetic differentia-

tion. These effects are observed even in the island model studied

here that lacks isolation by distance. The influence of spatial

heterogeneity on the maintenance of genetic variation is much

stronger than in the classical Levene (1953) model in which fit-

nesses are spatially variable but not frequency dependent. The

effect of spatial heterogeneity is expected to be even greater if

isolation by distance is present (as observed in Nuismer et al.

2000). The overall behavior is also affected by other parameters

(the number of sites, strength of selection, and migration rates) as

discussed above.

Our model does not show any substantial levels of local

adaptation measures �h and �p. Although the differences in

fitness that an individual would have if placed in any two un-

synchronized demes can be very large, when averaged across

time and space, these differences (as measured by �h and �p) are

very low (Figs. 5B and 9B). Further, although previous theoret-

ical models (e.g., Gandon et al. 1996; Lively 1999; Gandon and

Michalakis 2002; Gandon 2002) and reviews of empirical work

(e.g. Greischar and Koskella 2007; Hoeksema and Forde 2008)

found that parasite local adaptation was present when parasites

had greater migration rates than their hosts, we never observed

such outcomes consistently over time.

Several reasons explain why the measures of local adapta-

tion can be small despite the large FST values. The first two are

structural: FST is a normalized variance, although as equation

(9) shows the local adaptation measures we used correspond to

unnormalized covariances, and covariances are always smaller

than the corresponding variances. Additionally, FST is not sensi-

tive to different demes being synchronized. For example, if nine

demes have allele frequency 0 and one deme has allele frequency

1, FST = 1, but the measures of local adaptation will obviously

be small. These reasons however do not completely explain why

�h and �p in our model are that close to zero as we observe.

The small local adaptation measures in our model also result

from the fact that FST values of the two species are often out of

synchrony: when FST is large among host populations, it is neg-

ligible among parasite populations, and vice versa (see Fig. 2B).

The fact that genotype frequencies of the antagonist species are

similar across space leads to low local adaptation measures. For

example, if we measure local adaptation when FST is large for

hosts but almost zero for parasites, then any given host population

will have very similar mean fitness against its sympatric parasite

population as against allopatric parasite populations. Finally, the

symmetric nature of our model severely limits the behavior of

the local adaptation measures we use. In our model, the allele

frequencies either stabilize at 1/2 in all demes (so that no local
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adaptation is possible at all) or fluctuate around 1/2 so that the

averages over time are very close to 1/2 for all demes. As a result,

not much local adaptation on average is possible.

The symmetry around 1/2 can be broken by straightforward

generalizations of the model. For example, we can assume that

different genotypes have different maximum fitness in different

demes. A simple way to account for this would be to assume that

fitnesses of A and a instead of being given by equation (1a) are

wA,i = 1 + ζi − αi pi , wa,i = 1 − αi (1 − pi ), (19)

wB,i = 1 + ξi − βi (1 − hi ), wb,i = 1 − βi hi , (20)

where ζi and ξi varies across demes. Such a behavior will increase

genetic differentiation and is expected to result in more local

adaptation. The few runs of this more complex model that we

have performed support this intuition (see Fig. 10). In particular,

we observed an increase in local adaptation in parasites if their

migration rate is significantly higher than that of hosts, which

is what is expected from both theoretical (Gandon et al. 1996;

Lively 1999; Gandon and Michalakis 2002; Gandon 2002) and

empirical perspectives (Greischar and Koskella 2007; Hoeksema

and Forde 2008).

Despite the fact that in our symmetric model overall we find

very low levels of local adaptation, our analysis indicates that

spatial heterogeneity in selection coefficients yields much larger

local adaptation values than those observed under homogeneous

selection (the �h axis in Fig. 9B is an order of magnitude larger

than in Fig. 5B). This is compatible with the results reported

by Nuismer (2006) and Nuismer et al. (2000) and with the dis-

cussions on the possible effects of spatial variation in selection

coefficients and/or the effects of variation in the abiotic environ-

ment by Hochberg and van Baalen (1998), Hochberg et al. (2000),

Kawecki and Ebert (2004), and Nuismer and Gandon (2008) (this

last reference provides a very thorough discussion on the issue).

The fact that the strength and outcome of host–parasite interac-

tions is variable, depending on host and parasite genotypes but

also on abiotic environmental conditions, has been established in

so many cases that it is impossible to cite them all and seems

unfair to single out any. Nevertheless, it is striking to see that, to

our best knowledge, none of the empirical local adaptation studies

conducted so far on natural systems has taken variability of se-

lection coefficients or abiotic environment explicitly into account

and we are aware only of a single experimental study in which the

effect of abiotic variation has been addressed (Forde et al. 2004).

There is a clear need for empirical studies addressing these issues.

Our model, along with Nuismer (2006) and Nuismer et al. (2000),

predicts that there should be higher levels of local adaptation in

systems with spatially heterogeneous selection coefficients than

when these coefficients are similar across space. Further theo-

retical work is needed to elaborate predictions on the effects of

abiotic variation on local adaptation patterns.

Our fitness model (given by eq. 1) includes a modified

“matching allele model” (Nee 1989; Frank 1991a,b, 1994;

Gandon et al. 1996; Gandon 2002) as a special case. The latter

assumes that each host is fully susceptible to its complementary

parasite but confers resistance against the other parasite genotype

such that infection occurs with a probability s. The parameter s

(0 ≤ s ≤ 1) measures parasite specificity. When s = 0, there is

no specificity and each host type is equally susceptible to both

parasite types. When s = 1, each parasite can only infect its

complementary host (as in the classical “matching allele model”;

Agrawal and Lively 2002; Nuismer 2006). The other parameter

of the model is parasite virulence, v (0 ≤ v ≤ 1), measuring the

deleterious effect of parasites on the fitness of infected hosts. Pa-

rameters α and β of our model are related to parameters s and v

of the modified matching allele model via the relationships

α = sv

1 − v(1 − s)
, β = s. (21)

That is, β is identical to “virulence” whereas α depends on both

“specificity” and “virulence.” Gandon (2002) analyzed a spatially

homogeneous version of the modified matching allele model.

Rather than studying the multideme system explicitly, he modeled

the dynamics of a single deme assuming that the average allele

frequencies in the metapopulation are all equal to one half, and

that therefore the allele frequencies in migrants are all equal to one

half as well. Our model shows that under spatially homogeneous

selection either the allele frequencies synchronize and genetic

variation is quickly lost or the system as a whole goes through

cycles in which the average allele frequencies in the whole popu-

lation and among migrants cycle. The average allele frequencies

are very rarely at one half, and indeed never for both species at

the same time (e.g. see Fig. 2A). Therefore, the main assumption

of Gandon’s approach is never satisfied. Gandon (2002) argues

however that his approximations provide an accurate description

of local adaptation if additional factors maintaining spatial asyn-

chrony (such as random genetic drift and isolation by distance)

are introduced in the model.

Frequency-dependent selection within a single species is

well known for the ability to maintain genetic variation under

relatively broad conditions (Cockerham et al. 1972; Asmussen

and Basnayake 1990; Trotter and Spencer 2007). Frequency-

dependent selection can also easily produce nonlinear dynamics

including classical cycle and chaos (Altenberg 1991; Yi et al.

1999) and more exotic behaviors like intermittency and tran-

sient chaos (Gavrilets and Hastings 1995). Frequency-dependent

selection resulting from between-species interactions has been

shown to be able to both maintain genetic variation and re-

sult in nonequilibrium dynamics (Seger 1988; Kawecki 1998).
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Our haploid multideme model, fits this general pattern in that

nonequilibrium dynamics are common. We note that in a related

single-deme model of a diploid population with multiple loci and

nonequal allelic effects, cycling and chaos were observed readily

(Kopp and Gavrilets 2006). In the model studied here, the period

of cycling is at least on the order of a few dozen generations,

which will make it difficult to identify empirically.

The question to what extent our results generalize to more

complex genetic systems (e.g., diploid, multilocus, and multi-

allele) subject to the influence of additional factors present in

natural systems (e.g., mutation, genetic drift, and isolation by dis-

tance) is a very important one. Unfortunately given the inherent

complexity of the coevolutionary process in the spatially explicit

and environmentally heterogeneous context, to answer this ques-

tion one needs either to have solid theoretical results or to use

verbal arguments. We do not have the former and are skeptical

about the utility of the latter. Therefore answering this question is

delegated to future work.

Our findings support the major claim of the geographic mo-

saic theory (Thompson 2005) that the true dynamics of coevolu-

tion in real populations, and the persistence of interactions over

long periods of time, cannot be understood without explicit con-

sideration of spatial structuring of natural populations and hetero-

geneity in their environment. Our results should provide a firm

basis for analyzing and interpreting more complex and realistic

models of victim–exploiter interactions, in particular by allowing

to evaluate the effects of specific factors such as the strength of

selection, heterogeneity of selection, complexity of the genetic

system, or the importance of drift.
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Appendix
THE DERIVATION OF EQUATION (8).

Let gi = 1 − hi and qi = 1 − pi. For a randomly chosen host from

deme i, its fitness in deme i is

w̄h,i→i = hiwA,i + giwa,i ,

its fitness in deme j is

w̄h,i→ j = hiwA, j + giwa, j ,

and the difference between its fitness in deme i and in deme j is

�h,i→ j = hi (wA,i − wA, j ) + gi (wa,i − wa, j ).

For a randomly chosen host from deme i, the difference between

its fitness in deme i and in a randomly chosen different deme is

�h,i→away = hi

⎛
⎜⎜⎝wA,i −

∑
j �=i

wA, j

n − 1

⎞
⎟⎟⎠ + gi

⎛
⎜⎜⎝wa,i −

∑
j �=i

wa, j

n − 1

⎞
⎟⎟⎠

= n

n − 1
[hi (wA,i − w̄A) + gi (wa,i − w̄a)],

where w̄A = ∑n
i=1 wA,i/n and w̄a = ∑n

i=1 wa,i/n are the av-

erage fitnesses of host alleles across demes at this generation.

Finally, the expectation of �h,i→ away across all i, which is the

degree of local adaptation of a randomly chosen host from a ran-

domly chosen deme, is

�h = n

n − 1

[
cov(hi , wA,i ) + cov(gi , wa,i )

]
.

In a similar way, the expectation of the degree of local adaptation

of a randomly chosen parasite from a randomly chosen deme is

�p = n

n − 1

[
cov(pi , wB,i ) + cov(qi , wb,i )

]
.

The equations in the main text follow immediately because cov

(gi, .) = − cov (hi, .) and cov (qi, .) = − cov (pi, .).

NO MIGRATION (mh = mp = 0)

This case is the same as if there is a single deme. There are

four monomorphic equilibria and a single doubly polymorphic

equilibrium.

The four monomorphic equilibria are saddles. For the

monomorphic equilibria (0,0) and (1,1) the eigenvalues are

λ1 = 1

1 − α
> 1,λ2 = 1 − β < 1. (A1)

For the monomorphic equilibria (1,0) and (0,1) the eigenvalues

are

λ1 = 1 − α < 1,λ2 = 1

1 − β
> 1. (A2)
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For the polymorphic equilibrium (1/2,1/2) the characteristic equa-

tion is

λ2 − 2λ + 1 + AB = 0,

where A = α/(2 − α) > 0 and B = β/(2 − β) > 0. The roots

are λ1,2 = 1 ∓ √−AB. Therefore, the roots are complex and with

modules |λ1,2| = √
1 + AB > 1. Thus, this equilibrium is an un-

stable focus.

Numerical simulations suggest that the only dynamics are

the cyclical evolution toward the boundaries accompanied by a

quick loss of genetic variation.

TWO DEMES WITH SPATIALLY HOMOGENEOUS

SELECTION (α1 = α2 = α, β1 = β2 = β)

For the monomorphic equilibria (h1 = h2 = 1, p1 = p2 = 1) and

(h1 = h2 = 0, p1 = p2 = 0), the eigenvalues are

1 − β < 1, (1 − m p)(1 − β) < 1,
1

1 − α
> 1,

1 − mh

1 − α
.

For the monomorphic equilibria (h1 = h2 = 1, p1 = p2 = 0) and

(h1 = h2 = 0, p1 = p2 = 1), the eigenvalues are

1 − α < 1, (1 − mh)(1 − α) < 1,
1

1 − β
> 1,

1 − m p

1 − β
.

Note that the fourth eigenvalues can be smaller or large than

one depending on the the levels of migration. This suggests that

some change in the dynamics might happen as the relative values

mh/α or mp/β cross one. Numerical simulations did not show this

though.

Polymorphic equilibrium (1/2,1/2,1/2,1/2). Two eigenvalues

satisfy a quadratic

λ2 − 2λ + 1 + AB = 0.

These eigenvalues are complex: λ = 1 ∓ √−AB, and have the

modules larger than one. Therefore, the equilibrium is always

unstable.

Two other eigenvalues satisfy a quadratic

λ2 − 2

(
1 − mh + m p

2

)
λ + (1 − mh)(1 − m p) (1 + AB) = 0.

These eigenvalues are real (and, thus, are necessarily between 0

and 1) if

(m p − mh)2

(1 − mh)(1 − m p)
> 4AB.

The above condition assumes that the migration rates are different:

mp �= mh. If the migration rates are the same (mh = mp = m), the

eigenvalues are (1 − m)(1 ∓ √−AB).

MAXIMUM POSSIBLE MIGRATION (mh = mp = 1),

ARBITRARY NUMBER OF DEMES

After one generation the allele frequencies become the same

across all demes (as in the Levene model). Therefore the system

state is completely characterized just by two dynamic variables:

h and p. The dynamics are described by equation (10) of the main

text. There are four monomorphic equilibria which all are saddle

points. For the equilibria (1,1) and (0,0) the eigenvalues are

μ1 = 1

n

∑
(1 − βi ) < 1,λ1 = 1

n

∑ 1

1 − αi
> 1. (A3)

For the equilibria (1,0) and (0,1) the eigenvalues are

μ2 = 1

n

∑
(1 − αi ) < 1,λ2 = 1

n

∑ 1

1 − βi
> 1. (A4)

The polymorphic equilibrium (1/2,1/2) has two complex eigen-

values

λ1,2 = 1 ∓
√

− Ā B̄,

where Ā = ∑
Ai/n, Ai = αi/(2 − αi ), B̄ = ∑

Bi/n, Bi = βi/

(2 − βi ). Thus, this equilibrium is always an unstable focus.

There also exists a heteroclinic cycle, that is a cycle com-

prised by saddle trajectories. Adapting the derivations in Hofbauer

and Sigmund (1998) for the case of difference equations, the sta-

bility of a simple heteroclinic cycle is controlled by the coefficient

ρ = � j

(
ln μ−1

j

ln λ j

)
, (A5)

where μj < 1 and λj > 1 are the eigenvalues corresponding to

“incoming” and “outcoming directions” for the jth saddle point.

The cycle is locally stable if ρ > 1 and is unstable if ρ < 1. The

smaller ρ, the more “repelling” the cycle. Because for any random

variable x with expectation E{x},

1

1 − E{x} ≤ E

{
1

1 − x

}
,

μ−1
1 ≤ λ2 and μ−1

2 ≤ λ1 with equality only when selection is

homogeneous. Therefore, if selection is heterogeneous, ρ < 1

always, the heteroclinic cycle is unstable, the allele frequencies are

pushed from the boundaries, and genetic variation is protected.

ARBITRARY MIGRATION

In derivations below, we will use the following notation and ob-

servations. Consider a quadratic equation λ2 − 2λ X + Y = 0

where X, Y > 0. Its roots are X ∓ √
X2 − Y . Assume that X2 >

Y so that the roots are real. Both roots are between 0 and 1 if X <

1 and 1 − 2X + Y > 0. Both roots are larger than 1 if X > 1 and

1 − 2X + Y > 0. One root is larger than 1 and another is smaller

than 1 if 1 − 2X + Y < 0.
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Monomorphic equilibria
There are four monomorphic equilibria and the corresponding

eigenvalues all must be real. Consider first the monomorphic

equilibria (1,1,1,1) and (0,0,0,0). There are two eigenvalues that

satisfy a quadratic

λ2 − 2λ
(

1 − m p

2

)(
1 − β1 + β2

2

)

+ (1 − m p) (1 − β1) (1 − β2) = 0

Both these eigenvalues are always between 0 and 1 (because X <

1 and 1 − 2X + Y > 0).

Two other eigenvalues satisfy a quadratic

λ2 − 2λ

(
1 − mh

2

) (
1 − α1 + α2

2

)

(1 − α1) (1 − α2)
+ 1 − mh

(1 − α1) (1 − α2)
= 0.

Here, X > 1, if

mh <
α1 + α2 − 2α1α2

1 − 1

2
(α1 + α2)

, (A6)

and 1 − 2X + Y > 0, if

mh <
2α1α2

α1 + α2
. (A7)

From this, one can show that if condition (17) is satisfied, then both

roots are larger than one. Otherwise, one root is larger than one

and another root is smaller than one. For the equilibria (1,0,1,0)

and (0,1,0,1) two eigenvalues satisfy a quadratic

λ2 − 2λ
(

1 − mh

2

) (
1 − α1 + α2

2

)

+ (1 − mh)(1 − α1)(1 − α2) = 0.

Both these eigenvalues are smaller than one. Two other equilibria

satisfy

λ2 − 2λ

(
1 − m p

2

)(
1 − β1 + β2

2

)

(1 − β1)(1 − β2)
+ 1 − m p

(1 − β1)(1 − β2)
= 0.

Now both eigenvalues are larger than one if m p <
2β1β2

β1+β2
. One

eigenvalue is larger and one is smaller than one if the above

inequality is not satisfied. These results suggest that some changes

in the dynamics might happen as the relative values of mh/
2α1α2
α1+α2

or m p/
2β1β2

β1+β2
cross one.

Symmetric polymorphic equilibrium (hi = pi = 1/2 for
all i = 1, 2)
Numerical simulations suggest this is the only polymorphic equi-

librium that can be stable. Stability matrix has the following form:

S = 1

2

⎛
⎜⎜⎝

1 − mh/2 −A1(1 − mh/2) mh/2 −A2mh/2,

B1(1 − m p/2) 1 − m p/2 B2m p/2 m p/2,

mh/2 −A1mh/2 1 − mh/2 −A2(1 − mh/2),

B1m p/2 m p/2 B2(1 − m p/2) 1 − m p/2,

⎞
⎟⎟⎠

(A8)

where Ai = αi/(2 − αi), Bi = βi/(2 − βi).

The eigenvalues of S controlling the conditions for stability

are given by the roots of a fourth-order polynomial:

R = c4λ
4 + c3λ

3 + c2λ
2 + c1λ + c0, (A9)

where

c4 = 1, (A10)

c3 = −(2 + m̃ p + m̃h), (A11)

c2 =
[

1 + (A1 + A2)(B1 + B2)

4

]
(1 + m̃hm̃ p) (A12)

+
[

2 + (A1 − A2)(B1 − B2)

4

]
(m̃h + m̃ p), (A13)

c1 = −
(

1 + A1 B1 + A2 B2

2

)
(m̃h + m̃ p + 2m̃hm̃ p), (A14)

c0 = (1 + A1 B1)(1 + A2 B2)m̃hm̃ p. (A15)

with m̃h = 1 − mh, m̃ p = 1 − m p. Let λ = (1 + μ)/(1 − μ).

Then μ satisfies a polynomial

T = C4μ
4 + C3μ

3 + C2μ
2 + C1μ + C0,

where

C4 = c0 − c1 + c2 − c3 + c4, (A16)

C3 = −4c0 + 2c1 − 2c3 + 4c4, (A17)

C2 = 6c0 − 2c2 + 6c4, (A18)

C1 = −4c0 − 2c1 + 2c3 + 4c4, (A19)

C0 = c0 + c1 + c2 + c3 + c4. (A20)

According to the Liénard-Chipart version of the Routh-Hurwitz

criterion, the roots of the polynomial T have negative real parts if

and only if

C0, C1, C3, C4 > 0, (A21)
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�3 ≡ C1C2C3 − C0C2
3 − C2

1 C4 > 0. (A22)

If all μ’s have negative real parts, then all λ’s lie within a unit

circle of the origin in the complex plane. Thus, inequalities (22)

give the conditions for stability of the symmetric polymorphic

equilibrium.

Let s1 = A1 B1, s2 = A2 B2, Ā = (A1 + A2)/2, and B̄ =
(B1 + B2)/2. Let migration rates be equal, i.e. mp = mh = m

and m̃ = 1 − m. Performing straightforward calculations,

C0 = m̃2s1s2 + (1 − m̃)2 Ā B̄ > 0

and

C4 = m̃2s1s2 + (1 − m̃)2 Ā B̄ + 4(1 + m̃)2

+ 2m̃(1 + m̃)(s1 + s2) > 0.

Proceeding further,

C1 = 2m̃(1 − m̃)(s1 + s2) − 4m̃2s1s2,

and is positive if

m >
2s1s2

s1 + s2 + 2s1s2
. (A23)

In a similar way,

C3 = 8 − 2m̃(s1 + s2) − 2m̃2(4 + 3s1 + 3s2 + 2s1s2).

Solving this quadratic for m̃, one finds that C3 > 0 if

m > ml ≡ 1

− 1

2

√
(s1 + s2)2 + 16(4 + 3s1 + 3s2 + 2s1s2) − (s1 + s2)

4 + 3s1 + 3s2 + 2s1s2
.

(A24)

If the above condition is satisfied, condition (23) is satisfied as

well. That is, the migration rate must be higher than a threshold

ml. Note that 0 ≤ ml ≤ 0.5 and that stronger selection requires

stronger migration.

Finally,

�3 = 64m̃[1 − m̃(1 + s1)][1 − m̃(1 + s2)]

× [
3(1 + s1)(1 + s2)(s1 + s2 + s1s2)m̃3

− (s1 + s2 + 2s1s2)m̃2 − (s1 + s2 + 3s1s2)m̃ + s1 + s2
]

−64(1 − m̃)2[1 − m̃2(1 + s1)(1 + s2)]2 Ā B̄ (A25)

It can be shown that if condition (23) is satisfied then each

of the factors of the first term is positive.

Let us consider a few special cases.

(1) If m̃ → 0 (or, equivalently, m → 1), �3 → −64 Ā B̄. There-

fore, the symmetric polymorphic equilibrium can be stable

only for intermediate migration rates.

(2) Let s1 = s2 = s. Note that in this case A1/A2 = B2/B1 and

thus δ < 0. Then �3 can be written as

�3 = (1 − m̃)2[1 + m̃(1 + s)]2δ

− 4s[1 − m̃2(1 + s)][(1 − m̃)2 + sm̃[2 + 2m̃ + sm̃)].

This shows that �3 cannot be positive in this case.

(3) Assume that selection is weak so that Ai = √
εai , Bi =√

εbi , where var epsilon 
 1. Then

�3 = 64(1 + m̃)(1 − m̃)4[m̃(AB + δ) − Ā B̄] + o(ε),

where AB = (A1 B1 + A2 B2)/2 and δ = (A1 − A2)(B1 −
B2)/4. Note that δ = AB − Ā B̄ and, thus, has the meaning

of covariance. First, assume that AB + δ > 0. Then �3 >

0 if

m < mu ≡ 2δ

AB + δ
. (A26)

Note that in this case stability requires that δ > 0. Then,

assume that AB + δ < 0 that requires δ < 0. Now �3 > 0

if m > 2δ/(AB + δ) which however is not possible because

with negative δ the expression in the right-hand side of the

last inequality is larger than two. Therefore, if selection

is weak, the necessary conditions for stability are δ > 0

and m < mu. Notice that increasing spatial heterogeneity

(characterized by δ) widens the conditions for stability of

the symmetric polymorphic equilibrium.

(4) Assume that migration is weak (i.e., m 
 1). Then there are

two critical migration rates (which can be found explicitly

but are rather cumbersome), m1 = m1(s1, s2) and m2 =
m2(s1, s − 2, δ) such that �3 > 0 for m < m1 and m > m2

but �3 < 0 for m1 < m < m2. Numerical solutions show

that m2 can be larger than ml. Thus, in general, migration

rates necessary for stability can be larger than the critical

value predicted by condition (24).
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