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Abstract
Background: Every year, West Africa is afflicted with Meningococcal Meningitis (MCM) disease
outbreaks. Although the seasonal and spatial patterns of disease cases have been shown to be
linked to climate, the mechanisms responsible for these patterns are still not well identified.

Results: A statistical analysis of annual incidence of MCM and climatic variables has been
performed to highlight the relationships between climate and MCM for two highly afflicted
countries: Niger and Burkina Faso. We found that disease resurgence in Niger and in Burkina Faso
is likely to be partly controlled by the winter climate through enhanced Harmattan winds. Statistical
models based only on climate indexes work well in Niger showing that 25% of the disease variance
from year-to-year in this country can be explained by the winter climate but fail to represent
accurately the disease dynamics in Burkina Faso.

Conclusion: This study is an exploratory attempt to predict meningitis incidence by using only
climate information. Although it points out significant statistical results it also stresses the difficulty
of relating climate to interannual variability in meningitis outbreaks.

Background
Meningococcal Meningitis (MCM) is a contagious infec-
tion disease due to the bacteria Neisseria meningitis. MCM
epidemics occur worldwide but the highest incidence is
observed in the "meningitis belt" (Fig. 1) of sub-Saharan
Africa, stretching from Senegal to Ethiopia [1,2]. This
region, first defined by Lapeyssonie in 1963 [2], is charac-
terised by seasonal epidemics during the dry season which
usually stop with the onset of rains, and also by large epi-

demics which occurred every 8–12 years, culminating in a
massive epidemic in which nearly 200,000 cases were
reported in 1996 [1,3]. Among the well-known different
serotypes of Neisseria meningitis isolated in Africa such as
serogroups A, C, Y and W135, group A remains the major
serogroup responsible for African epidemics throughout
the past 70 years [4] despite a recent emergence of sero-
group W135 (see [5] for review).
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The actual factors that initiate these epidemics are not yet
clearly understood although we know that a complex
interplay of social interactions [6], transmission of a new
epidemic strain [4], susceptibility of populations [7],
asymptomatic carriage [8] and environmental conditions
[9] is involved. Among favourable conditions for the
resurgence and dispersion of the disease, climatic condi-
tions may be important inducing seasonal fluctuations in
disease incidence and contributing to explain the spatial
pattern of the disease roughly circumscribed to the ecolog-
ical Sahelo-Sudanian band [2,10]. The role of climate on
this meningitis seasonality and spatial distribution has
been widely studied [11-13]. The Sahelo-Sudanian region
is subjected to a sequence of dry winter, dominated by dry
and dust-laden northern winds, called the Harmattan,
and wet season starting at spring with the monsoon. A
recent study has provided a clear, quantitative demonstra-
tion of the existing connections between meningococcal
meningitis epidemics onset and the Harmattan winds
[11]. The authors have shown a correlation between the

week of the maximum speed of a Harmattan wind index
and the week of the onset of the epidemics in Mali.
Another recent study [14] found that anomalies in annual
meningitis incidence at district level were related to
monthly climate anomalies. Significant relationships
were found for both estimates of dust and rainfall in the
pre-, post- and epidemic season.

The objective of this study is twofold. First, we investigate
the role of climate on the triggering of MCM epidemics by
using a long-term dataset. Second, we explore the possi-
bility to include the climate conditions as a predictor of
meningitis epidemics. To do so, we start by defining an a
priori hypothesis on the causal link between climate and
disease. Based on a literature review, we assume that dry
and windy weather conditions in early winter might cause
damage to the mucous membranes of the respiratory sys-
tem and/or inhibits mucosal immune facilitating the
transfer of the bacterium to the meninges and thus create
propitious conditions to the triggering of MCM epidemics

Map of West Africa and the "Meningitis Belt"Figure 1
Map of West Africa and the "Meningitis Belt". Modified from WHO (1998).
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[12,13,15]. According to this hypothesis, if the role of cli-
mate is strong enough, we should observe a positive cor-
relation between the markers of these particular winter
conditions (i.e. strong north-easterly wind, high pressure
and dryness) and the MCM incidence. Since the triggering
of epidemics is probably not only due to climate but
results from numerous processes acting at different spatial
hierarchical scales in various medical, demographical and
socio-economical conditions, an absence of significant
correlation between climate and disease would not neces-
sary confound this hypothesis but could point out that cli-
mate is not a major driver. In order to verify our a priori
hypothesis, we will examine the statistical links between
winter climate variables and disease dynamics in two
highly affected countries, Niger and Burkina Faso. Since
most studies have focused on very small spatial scales, we
will follow suggestions from Sultan et al. [11] and Broutin
et al. [3] and use national-scale aggregated data. The aggre-
gation of local data is a simple way to go beyond data het-
erogeneities and idiosyncratic details in order that only
the important disease generalities, conditioned by the
large-scale forcing, e.g. climate variability, remain.

Materials and methods
Epidemiological data
This work is based on the WHO disease surveillance over
Africa. Details on the diagnosis used for meningitis can be
found in WHO [16]. Meningitis reporting is incorporated
into weekly reporting of notifiable diseases and aggre-
gated at different spatial scales from the health unit to the
country level. From this surveillance, WHO proposed a
strategy aimed at early detection and control of meningitis
epidemics at the level of health districts. This strategy is
based on a strengthened epidemiological surveillance,
mass immunization campaigns when incidence rate
thresholds are exceeded and case management with
appropriate antimicrobial therapy.

This database is available online on the WHO website and
has already been used by Broutin et al. [3] to make a com-
parative study of meningitis dynamics across nine African
countries. Although this dataset covers the period
1939–2005, we consider only the years after 1966 for two
reasons. First, there is a large number of missing values
before 1966. Second, Broutin et al. [3] have shown major
changes after the 60's and the 70's in meningitis periodic-
ities and synchronicities across African countries. These
changes might be induced by the start of vaccinations at
the end of 1970's in all of these countries. By taking into
account only the post-vaccination period, we consider the
most homogeneous time series to describe the meningitis
dynamics but we have to keep in mind that a part of the
variance of the incidence data might be explained by vac-
cination effect. However, as vaccination strategy has var-
ied across country and within a same country (different

proportions and with different types of vaccines, different
policy from reactive to mass vaccination), the impact of
vaccination is very difficult to point out in our time series.

In this study, in order to document the intensity of the dis-
ease from year to year and to work with a dataset as large
as possible, we use the annual sum of MCM cases over
eight African countries with one value per year and per
country (Table 1; see Table 2 for the name of the eight
countries). This annual sum of cases per country is not
representative of the whole country but describes mainly
the areas with the highest population. We perform two
initial transformations of meningitis data before compar-
ing them with climate data. First, since the MCM cases
have a natural trend associated with population increase
(which has more than trebled over the time period of
investigation), we do not use directly the MCM cases but
an incidence rate (latter IR) defined by the number of
cases per 100.000 inhabitants (based on USGS total pop-
ulation estimates). The computation of this IR allows us
to consider the thresholds defined by WHO for the epi-
demics surveillance. Secondly, since the meningitis data
are highly skewed, as would be expected of an epidemic
dataset, we apply a log-transform to IR (latter log-IR) in
order to normalize the distribution.

Atmospheric data
The National Centers for Environmental Prediction
(NCEP) and the National Center for Atmospheric
Research (NCAR) have completed a reanalysis project
with an up-to-date version of the Medium Range Forecast
model [17]. This dataset consists in a reanalysis of the glo-
bal observational network of meteorological variables
and a forecast system to perform data assimilation
throughout the period 1948 to present. However, prior to
1968 they are not fully reliable for the African continent,
as demonstrated in Camberlin et al. [18].

We use these atmospheric variables over the period
1968–2005 in average with one value per month and per
country (Table 1). Notice that for the case of Niger, the
atmospheric variables are averaged not for the whole
country as for Burkina Faso but only for the Southern half
of Niger lying within the meningitis belt (Fig. 1). We select
7 variables (Table 3) that are likely to influence MCM dis-
ease outbreaks according to the literature:

- Wind velocity (zonal and meridional components, wind
speed) and sea-level pressure that characterize the Har-
mattan circulation intensity. The influence of the latter cir-
culation on meningitis has been shown recently [11].

- Surface temperature, specific and relative humidity near
the surface that are markers of the dry conditions propi-
tious to the MCM epidemics. The incidence of MCM has
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previously been correlated with dry and dusty conditions
[1,9,13].

Correspondence Analysis
In order to summarize the MCM cases dataset composed
of 34 annual values from 1966 to 1999 for each of the 8
West African countries (Table 1 and Table 2) under study
and to compare the disease dynamics in these countries,
we use the Correspondence Analysis (CA). This method is
well-suited to look at the main structure of a normally dis-
tributed dataset without a priori hypothesis. Since we nor-
malize the distribution of meningitis data by applying a
log-transform to IR, this method can thus be applied to
our data. For that:

- First, since the log-IR are normally distributed, it permits
classification of the years according to quartile groups
which divide the sorted data set into four equal parts so
that each part represents 1/4 of the sampled population.
For each country, we then classified the years of meningi-
tis data into one of the four categories according to log-IR
thresholds. The first 1/4 is defined as very low incidence
group, the second is the "low incidence" group, the third
is "high incidence" and the last one is the "very high"

(Table 2). As a result, for Benin for instance, 4 years are
considered with "very low" incidence, 15 years are "low",
9 are "high" and 5 are "very high".

- The IR ranges of the four resulting categories (Table 2)
are pared to the thresholds defined by WHO for the epi-
demics surveillance. Two thresholds are used by WHO at
the district level, the Alert Threshold (AT) which considers
more than 5 cases per week and per 100.000 inhabitants
and the Epidemic Threshold (ET) which is more than 10
cases per week and per 100.000 inhabitants. The lowest IR
category regroups the years with less than 7.2 cases/
100.000 inhabitants which is lower than the ET while the
highest IR category regroups years with an IR four times
greater than the ET. However, since data are used at a more
aggregated space and time scale (country instead of dis-
trict and year instead of week), there is no direct corre-
spondence between these thresholds and the quartiles.

- We then construct a two-way contingency table from the
original dataset which is a tabular cross-classification of
data such that one subcategory (countries) is indicated in
rows and another subcategory (the four IR categories) is
indicated in columns (Table 2).

Table 1: Summary of epidemiological and environmental datasets

Type of data Available 
data period

Used data
period

Available time/space
scale

Used time/space
scale

1 Meningitis 
cases

1939-today 1966–2005 Weekly/Health unit Annual/Country

2 Environmental
variables

1948-today 1968–2005 4 values per
day/grid-spacing of 2.5°

latitude by 2.5° 
longitude

Monthly/Country

The discrepancies between available and used data are justified in the Materials and Methods section.

Table 2: Classification of the MCM datasets for 8 West African countries

Very low
IR < 7.2

Low
7.2 < IR < 18.9

High
18.9 < IR < 41.3

Very high
IR > 41.3

1 Benin 4 15 9 5
2 Burkina Faso 0 1 18 15
3 Chad 5 9 9 11
4 Mali 10 12 4 6
5 Niger 0 1 9 20
6 Nigeria 19 9 2 1
7 Sudan 18 2 6 4
8 Togo 8 14 7 2

Classification of the meningitis dataset (34 annual values from 1966 to 1999 for 8 West African countries) into four categories according to log-
Incidence Rate (log-IR) thresholds. Since the log-IR are normally distributed, the classification has been done according to quartile groups which 
divide the sorted data set into four equal parts, so that each part represents 1/4 of the sampled population. The IR range of the four resulting 
categories is shown in the first row.
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- Finally, we apply a CA which is able to give the best
simultaneous representation of the rows and the columns
of such two-way contingency table. CA is based on the
extraction of the principal canonical correlations and cor-
responding row and column-scores from a correspond-
ence analysis of a two-way contingency table [19]. From
the row and column-scores on the two main factors, it is
possible to make a graphical representation of both rows
(countries) and columns (the four IR categories) of the
contingency table (see Fig. 2). Such graphical representa-
tion gives a good summary of the structure of the original
dataset highlighting proximities between one country and
another and between countries and IR categories. Notice
that the distance between two countries is not driven by
the average IR over the period 1966–1999 but by the
number of years in each cluster. We thus are able to com-
pare the distribution of MCM annual IR for each country.

Composite analysis
In order to detect relationships between climate and MCM
incidence, we perform a composite analysis. For each
country, we first classify the years into two sub-groups: the
years with the highest IR (the years with a log-IR greater
than the third quartile) and the years with the lowest IR
(the years with a log-IR lower than the first quartile). We
then average separately the atmospheric data for the high
(HIGH) and low (LOW) MCM incidence years. Finally we
compute the HIGH minus LOW difference in order to
point out the atmospheric situations characterizing a typ-
ical high incidence year. The significance of this difference
is attested using a Student test.

Correlations between climate and MCM
In order to detect relationships between climate and MCM
incidence, we compute the correlations between the
monthly atmospheric variables and the annual log-IR. For
each country, we compute the correlation coefficients
between each of the 7 atmospheric values for one month
and the annual log-IR of the country. These correlations
are given for the 4 fall-winter months: October to January.
They are computed over 1968–2005. Because of the
number of variables used for the correlations computa-
tion (7 variables over 4 months), there is always the pos-

sibility of a chance association emerging. Classical
significance tests do not consider this risk since there are
applied independently for each time series and do not
take into account the repetition of the correlation compu-
tation which increases the possibility of a chance associa-
tion. We thus set-up a test reproducing our experimental
conditions: we generate a set of 7 × 4 random Gaussian
time series with the same properties (mean and variance)
than the atmospheric variables and compute the correla-
tion between each random time series and the log-IR of
the considered country. We then use to assess the signifi-
cance of the correlations at the 1% level of confidence the
threshold given by the positive (negative) correlation val-
ues of the 99% (1%) quantile of the 7 × 4 random corre-
lation values. This experiment is reproduced 10, 000 times
and we average the positive and negative thresholds over
the 10, 000 repetitions.

Multivariate linear regression models
The analysis of the links between climate and MCM are
then used to select a set of atmospheric predictors that
likely influence the MCM incidence. These predictors can
be used to build up a stepwise multivariate linear regres-
sion model in order to predict the annual MCM incidence
rate. The equation of the multivariate model is:

Y = α + β1X1 + � + βpXp

Y represents the predicted log-IR value, α is a constant,
and each β terms denotes a regression coefficient for the
corresponding predictor X.

Table 3: The environmental variables used in the study

Environmental variable Code

1 Zonal wind (m/s) UWND
2 Meridional wind (m/s) VWND
3 Wind speed (m/s) MOD
4 Sea level pressure (Pa) SLP
5 Surface temperature (°C) AIR
6 Surface relative humidity (%) RHUM
7 Surface specific humidity (kg/kg) SHUM

The two main factors of the year-to-year disease variability in West AfricaFigure 2
The two main factors of the year-to-year disease var-
iability in West Africa. Graphical representation of the 
two main factors of the Correspondence Analysis where 
both rows (countries) and columns (four clusters character-
izing the intensity of the epidemic) of the contingency table 
(Tab.2) are projected.
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The robustness and the forecast skill of the regression
models are assessed using two standard methods: the
cross-validated correlation and the Relative Operating
Characteristics (ROC) score:

- A simple leave-one-out cross-validation is used to docu-
ment the stability of the regression models: we compute
the model parameters from a portion of the data (called
training period) composed by all years minus one and we
look at the prediction of the remaining data. The cross-
validated correlation is a much more realistic representa-
tion of the skill of the model applied to "unseen" years.

- ROC is a means of testing the skill of categorical forecasts
[20,21]. It is based on contingency tables giving the Hit
Rate (HR) and False Alarm Rate (FAR). We first transform
our data and forecasts into binary time series where only
two outcomes are possible, an occurrence of high inci-
dence year or a non-occurrence, according if the log-IR of
the year is greater or above the median which divides the
dataset in half. We then compute a contingency table
based on these two categories and calculate the HR and
FAR which are simply percentages that tell us how well the
forecast did when a high incidence year was observed, and
likewise, how well the forecast did when a high incidence
year was not observed. An example of this contingency
table is given in Table 4. The "hits" ("zeros") category rep-
resents the number of high (non-high) incidence rate that
have been forecasted as so. The "false alarms" ("misses")
category represents the number of non-high (high) inci-
dence years that have been forecasted as high (non-high)
incidence years. The HR is defined as:

It is comprised between 0 and 1, 1 meaning that all occur-
rences of high incidence year were correctly forecast as so.
The FAR is defined as:

It is comprised between 0 and 1, 0 meaning that all fore-
casted high incidence year were observed as so. The ROC
score is a measure of the hit rate to false-alarm rate. It is
recognised that the ROC score as applied to deterministic
forecasts is equivalent to the scaled Hanssen and Kuipers
score (HKS; 21). HKS is defined as:

The range of possible values goes from 0 to 1 where a per-
fect forecast system has a value of one and a forecast sys-
tem with no information has an value of 0.5 (HR being
equal to FAR).

In our study, these standard forecast skill methods are also
applied to a reference forecast method based on persist-
ence (the incidence rate of one year is the same than the
incidence rate of the previous year). Since the persistence
is the simplest way to produce a forecast, we consider the
skill of our regression models as useful if it is greater than
the persistence skill.

Susceptible-Infected Model
In order to illustrate hypotheses on the disease transmis-
sion, we use a Susceptible-Infected (SI) model. Such mod-
els [22] are widely used for direct infectious disease in
order to examine transmission processes [23]. It consists
of two compartments: Susceptible (S) and Infected (I).
Individuals in the S compartment are susceptible to be
infected and move to the I compartment with a speed con-
trolled by a transmission rate. The initial sizes of the two
compartments and the transmission rate are the parame-
ters needed to fit the model. We choose these parameters
to reproduce roughly the same temporal characteristics of
an outbreak in Burkina Faso. To do so, we use a discrete
model and simulate an outbreak over one virtual year of
52 time steps (a weekly time step) with a peak occurring
during the first half of the year. Notice that the SI model
is mainly used here for an illustrative purpose.

Results
The year-to-year variability of meningitis cases and inci-
dence rates is described for 8 West African countries over

Table 4: Hits and False alarms in forecast models

Predicted

Non-High 
incidence year

High 
incidence year

Observed Non-High 
incidence year

zeros false alarms

High 
incidence year

Misses hits

Illustration of the contingency table used to evaluate the forecast 
models. We first transform our data and forecasts into binary time 
series where only two outcomes are possible, an occurrence of high 
incidence year or a non-occurrence, according if the log-IR of the 
year is greater or above the median which divides the dataset in half. 
We then compute a contingency table based on these two categories. 
The "hits" ("zeros") category represents the number of high (non-
high) incidence rate that have been forecasted as so. The "false 
alarms" ("misses") category represents the number of non-high (high) 
incidence years that have been forecasted as high (non-high) incidence 
years.

HR
hits

hits misses
=

+

FAR
false alarms

hits false alarms
=

+
 

 

HKS
HR FAR= − +1

2
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the 34-year period between 1966 and 1999. The CA is
used to compare the disease dynamics in these countries
(see Materials and Methods). Figure 2 represents graphi-
cally the 8 countries in the two main factors of the CA
applied to the MCM incidence rates. The proximity
between countries is driven by the number of years in the
4 incidence categories (Table 2). The main factor (the hor-
izontal axis) discriminates (i) the countries with a high
number of low MCM incidence years (i.e. Sudan, Nigeria)
on the left side of the axis and (ii) the highly affected
countries with the greatest number of high MCM inci-
dence years (Burkina Faso and Niger) on the right side of
the axis. The second factor (the vertical axis) isolates the
countries with a large number of years whose annual
MCM incidence rates are close to the 1966–1999 average
(high and low, i.e. Mali, Togo, Chad and Benin). The anal-
ysis thus points out three different disease dynamics in
these countries: the "high-risk" countries characterized by
several years with very severe epidemics, the "medium-
risk" countries mainly with MCM cases each year but
without severe epidemics, the "low-risk" countries with
very low MCM cases each year. We now focus our study on
the two "high-risk" countries, i.e. Niger and Burkina Faso
to analyze the link between MCM incidence and climate.

In order to point out the impact of climate on the trigger-
ing of MCM epidemics in Niger and Burkina Faso, we cal-
culate the correlations between winter climate variables
and the MCM annual log-IR over the period 1968–2005
to verify the a priori hypothesis defined in the background
section. Correlations are computed for 4 months from
October to January in order to focus our study on the
atmospheric dynamics before the onset and the seasonal
maximum of MCM cases [11]. Figure 3 represents graphi-
cally these correlations for both Niger (top) and Burkina
Faso (bottom). Even if the correlations values are low, per-
sistent and significant (at the 99% confidence interval; see
Materials and Methods for the detail of the significance
test) correlations between climate and MCM are found in
Niger. We observe in November and in December a nega-
tive correlation between MCM incidence and the meridi-
onal wind component. As a negative value of the
meridional wind component depicts a northerly wind,
this correlation pattern is coherent with our hypothesis
associating an enhancement of the Harmattan flow with
an increase of MCM incidence. However the climate sig-
nal is less clear in Burkina Faso where the only significant
values (at the 99% confidence interval) are found in Octo-
ber. As for Niger, we observe a negative correlation
between the MCM incidence and the meridional wind
component implying an enhancement of the northerly
Harmattan flow. In order to attest the robustness of these
correlations and to document their spatial extension, we
perform a composite analysis by averaging separately the
wind data for the years recording the highest (HIGH) and

the lowest (LOW) incidence rates. Figure 4 shows the
HIGH minus LOW difference in the October, November
and December wind data in order to point out the atmos-
pheric situations characterizing a typical high incidence
year. Only significant values at the 10% confidence inter-
val are reported in Fig. 4. The composite analysis in Niger
(top of the Fig. 4) shows a very clear enhancement of the
Harmattan winds in November and December consistent
with the correlations results. This enhancement of the
north-easterly flow is mainly limited to Niger attesting the
robustness of the results. However this enhancement does
not persist in January and later in the year (not shown).
The HIGH minus LOW difference is less clear in Burkina
Faso. Only the atmospheric situation in October shows a
difference pattern coherent with our a priori hypothesis,
pointing out a local increase of the north-easterly flow in
Burkina Faso and an enhancement of a large anticyclonic
anomaly in northern Africa favourable to the strengthen-
ing of the Harmattan wind.

Based on the significant correlations we previously
obtained between climate and disease, we explore the pre-
dictability of the disease in Niger and in Burkina Faso by
using winter climate indexes. For each country, we select a
set of atmospheric predictors among the atmospheric var-
iables showing the clearest interpretative link with the
annual incidence of MCM. These predictors are used to
build a step-wise multivariate regression in order to pre-
dict the annual MCM log-IR separately in Niger and in
Burkina Faso (see Material and Methods). Among the
atmospheric variables averaged over Niger, we retain two
predictors for the Niger model, the meridional wind com-
ponents both in November and December. Among the
atmospheric variables averaged over Burkina Faso, we
retain one predictor in Burkina Faso, the meridional wind
component in October. The results of the two models are
shown in Figure 5 and Table 5. The correlation between
the observed and predicted MCM time series is encourag-
ing in Niger up to 0.62, but lower in Burkina Faso (R =
0.42). The decadal variability of the disease is well pre-
dicted by the model as well as several high values in Niger
such as 1978 and 1995. However the Niger model misses
several strong epidemic years (see 1970 and 1986). The
robustness and the skill of the two models can be attested
by the calculation of the Cross-Validated Correlation, the
False Alarm Rate (FAR), the Hit Rate and the Hanssen and
Kuipers score (respectively CVC, FAR, HR and HKS; see
Materials and Methods). Table 5 gives the CVC, FAR, HR
and HKS values for the Niger and Burkina Faso models
and compares these values to the skill scores obtained by
using persistence to forecast the incidence rate (the inci-
dence rate of one year is the same than the incidence rate
of the previous year). The CVC is 0.50 for the Niger model
which is less than the correlation given above but still sig-
nificant and greater than the persistence forecast skill. The
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Correlations between climate and meningitis in Niger and Burkina FasoFigure 3
Correlations between climate and meningitis in Niger and Burkina Faso. (A) Correlation coefficients between the 
MCM annual log-incidence rates in Niger and 7 monthly averaged atmospheric variables over Niger. The correlations are com-
puted for each month from October to January over the 1968–2005 period. The monthly atmospheric variables from October 
to December of the year y are correlated with the MCM log-incidence rate of the following year y+1, while the monthly atmos-
pheric variables in January of the year y are correlated with the incidence MCM rate of the same year y. Significant values at the 
99% confidence interval are outside of the shaded box (see Materials and Methods for details on the significance test). The 
atmospheric variables (Tab.3) are: UWND the zonal wind, VWND the meridional wind, SLP the seal-level pressure, MOD the 
wind speed, AIR the surface temperature, RHUM the relative humidity and SHUM the specific humidity. (B) Same as (A) but for 
atmospheric variables and MCM incidence in Burkina Faso.
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squared CVC is around 0.25 which means that 25% of the
disease variance from year-to-year is explained by the cli-
mate variability in winter. The cross-validated prediction
(the red line in Fig. 5) tends to under-estimate the extreme
values of the MCM incidence rates (see 1995 for the Niger
model). The HR of the Niger model is high (HR = 0.83)
and better than the persistence HR (HR = 0.67) meaning
that 83% of the high incidence years have been forecasted
as so. However the Niger model tends to overestimate the
number of high incidence years with a FAR greater than
the persistence FAR (0 is being desirable). By considering
both good and bad forecasts using HKS, it appears than
the Niger model has a predictive value since the HKS is
greater than 0.5 (HKS = 0.68). The skill score is greater for
the Niger model than for a persistence-based prediction
but the difference is not very large (HKS = 0.63 for the per-
sistence model).

The Burkina Faso model gives lower scores with a correla-
tion between the observed and predicted MCM time series
around 0.42 and falling to 0.33 for the CVC. Forecasts
based on persistence do a better job for the four skill
scores CVC, HR, FAR and HKS (see Table 5). These low
skill scores can be partly explained by the fact that only
one predictor in the atmospheric circulation could be

found to build the regression model while two predictors
were used in Niger.

Discussion
In this study, the relationships between climate and MCM
disease at interannual and country scales have been statis-
tically investigated in two highly affected countries: Niger
and Burkina Faso. We pointed that these links are particu-
larly clear in Niger and weak but significant in Burkina
Faso. The disease resurgences in Niger and in Burkina Faso
are linked with an enhancement of the winter conditions,
e.g. enhanced Harmattan winds over Niger in November/
December and over Burkina Faso in October. These find-
ings are coherent with a previous study which showed a
positive correlation between the October dust and menin-
gitis incidence in Burkina Faso, Mali and Niger [14]. Here,
we also defined relevant climatic variables for the con-
struction of linear models to forecast MCM epidemics
intensity from year to year. These statistical models work
well for Niger showing that 25% of the disease variance
from year-to-year in this country can be explained by the
winter climate but fail to represent accurately the disease
dynamics in Burkina Faso. Although this study points out
significant statistical results, it also stresses the difficulty of

The atmospheric situations characterizing a typical high incidence yearFigure 4
The atmospheric situations characterizing a typical high incidence year. A composite analysis is performed by aver-
aging separately the surface wind data for the years recording the highest (HIGH) and the lowest (LOW) incidence rates in 
Niger (top) and in Burkina Faso. The maps show the HIGH minus LOW difference in the October, November and December 
wind data (m/s) in order to point out the atmospheric situations characterizing a typical high incidence year. Only significant 
values at the 10% confidence interval using a Student test are reported.
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relating climate to interannual variability in meningitis
outbreaks. Numerous reasons can be pointed out to
explain this limitation but two are of most importance:

First, the final size of the outbreak clearly does not depend
only on climate but implies many other factors. The size
of the epidemics will be also (and perhaps mainly) driven
by the immunity of the affected population against the
serotype involved in the outbreak and socio-economic

Predictions of meningitis outbreaks in Niger and Burkina FasoFigure 5
Predictions of meningitis outbreaks in Niger and Burkina Faso. Observed (yellow) MCM annual log-incidence time 
series and cross-validated forecast (red) for Niger (A) and Burkina Faso (B) from 1968 to 2005. The grey lines represent each 
individual forecast produced during the cross-validation process. The values in the green area correspond to the values lower 
than the median and have been considered as low incidence years in the ROC process. Alternatively the values greater than 
the median have been considered as high incidence years. The crosses depict missing values.
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factors (pilgrimages, migrations) [6,7]. The proportion of
carriers might also play an important role in the disease
dynamics (see [8] for review). Vaccination, even if there is
a debate on the efficiency on the meningitis control activ-
ities [24-26], has certainly an impact on the final size of
the outbreak as it is suggested by Broutin et al. [3] in their
comparative studies of meningitis dynamics across several
African countries. The second important limitation to our
study corresponds to the meningitis data themselves.
Missing values as well as suspected underreporting may
introduce some biases in the incidence time series. As a
consequence of the above factors, influencing the final
size of the outbreak, it is thus very likely that the meningi-
tis incidence data contain trends, strong or low incidence
events or periods that can not be related to any climate
effect. It is probably what starts to account for the differ-
ences in results between countries. The weak correlation
between climate and disease in Burkina Faso does not nec-
essary confound our hypothesis of the dry northerly
winds being implicated in the outbreaks of meningitis but
could point out that climate is not a major driver of the
disease dynamics. Alternatively, since the variability of the
meningitis incidence from one year to another results
from numerous processes acting at different spatial hierar-
chical scales in various medical, demographical and socio-
economical conditions, the results obtained with the
Niger model, even if the correlation values and the
explained variance are weak, suggest that climate is an
important driver for the triggering of epidemics in Niger
and validate the large-scale approach that allows to
smooth local data heterogeneities.

Moreover, such statistical study can only demonstrate a
statistically significant association and not causation. It is
always possible that changes in climate are linked to other

factors, such as a change in social behaviour that is the key
determinant of the effect. This point is of importance as
there is no robust physiological mechanism for the role of
climate in disease occurrence. In our study and in that of
Thomson et al. [14], the correlations between climate and
disease are depicted very early in the meningitis epidemic
season and do not persist during the epidemic season. It
is not clear how atmospheric conditions in October-
November-December (OND) affect an outbreak occur-
ring 3–4 months later since the incubation period of
meningococcal meningitis is a few day to weeks. Different
climate influences with longer and shorter relationships
to disease incidence may be at work to explain these cor-
relations. On one hand, climate could have a cumulative
effect on the vulnerability of the population to the infec-
tion. Long-term exposure to air dryness and strong dust
winds might weaken resistance of human oro-pharyngeal
membranes through successive respiratory infections
making propitious conditions to the passage and inner
release of the bacteria responsible for the disease when the
organism is carried [15]. On the other hand OND winter
conditions could act with a shorter time-lag by enhancing
meningococcal invasiveness during the pre-epidemic sea-
son through the same mechanism explained above, i.e.
direct damage of the mucosal barrier and/or an inhibition
of the mucosal immune defences [15]. The early cases
induced by climate effect could then have an influence on
the final size of the outbreak through contacts within and
among households and communities since these contacts
increase the risk of acquiring infection [27] and increase
the carrier rate of the pathogenic serogroup (see [8] for
review). The importance of early cases in the final size of
the outbreak has already been stressed by WHO [28] that
consider early cases in the season as a warning sign of
large epidemic. This importance is illustrated by Figure 6
using monthly cases in Burkina Faso from 1961 to 2005
(the longest complete monthly time series). Fig. 6a shows
that the number of cases during the peak months (January
to April) increases with the number of early cases occur-
ring between October and December. Another interesting
point is that early cases seem to impact the seasonal cycle
of meningitis with the peak month of the epidemic being
advanced (delayed) with a high (low) number of early
cases (Fig. 6c). This increase of the epidemic size com-
bined with the advance of the epidemic peak is a well
known response of basic SI epidemiological models to the
increase of the initial number of infected individuals. Fig.
6 shows the response to an increase of initial infected
individuals in a SI model fitted to reproduce roughly the
same temporal characteristics of an outbreak in Burkina
Faso. Notice that the response of the SI model to the ini-
tial infected cases does not depend on the value of its
parameters (i.e., the initial size of the susceptible popula-
tion and the transmission rate). The similarity of Fig. 6a,c
and Fig. 6b,d could suggest an importance of transmission

Table 5: Skill scores of the meningitis forecast models

Niger Burkina Faso

Climate-based 
model

Persistence
model

Climate-based 
model

Persistence 
model

CVC 0.50 0.30 0.33 0.55
HR 0.83 0.67 0.74 0.79
FAR 0.47 0.41 0.50 0.28
HKS 0.68 0.63 0.62 0.76

The skill is given by the Cross-Validated Correlation (CVC; 1 being 
desirable), the Hit Rate (HR; 1 being desirable), the False Alarm Rate 
(FAR; 0 being desirable) and the scaled Hanssen and Kuipers score 
(HKS; 1 being desirable). The skill of the climate-based model 
developed in this study is compared to the reference skill of a 
persistence-based model (the incidence rate of one year is the same 
than the incidence rate of the previous year). Since the persistence is 
the simplest way to produce a forecast, we consider the skill of our 
climate-based models as useful if it is greater than the persistence 
skill.
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in the final size of the outbreak. In the latter hypothesis,
climate would act indirectly in transmission by increasing
the number of infected hosts at the beginning of the epi-
demic season when the reproductive ratio is very low; this
increase being responsible, trough transmission, in the
increase of the final size of epidemics. However even if the
disease might play a role in transmission [27], meningo-
coccal transmission often occurs in the absence of a corre-
sponding increase of the rate of meningococcal disease,
through asymptomatic carriers, indicating that transmis-
sion alone is not sufficient to trigger an epidemic [13,15].

Given these difficulties, much more work need to be done
to use such climate indexes in the context of a survey and
an early warning system (EWS) to influence public health
policy, for example setting in place an epidemic prepared-
ness programme, ordering vaccine, etc. After this work, it

is clear that the opportunity of the use of environmental
variables in such EWS should now be further investigated
by including other factors which also are likely important
drivers in MCM dynamics. In particular, epidemiological
and population parameters (immunity, carriers, popula-
tion size, ...) should clearly be including in any forecasting
tool as well as behaviour factors like migrations. This
approach will remain explorative since the main risk and
control factors for the disease and how they interplay each
other are not better understood. Further combined epide-
miological and climate studies are recommended to help
in a better understanding of MCM dynamics and evolu-
tion at different spatial-scales. A key issue is the extent and
the improvement of epidemiological and environmental
datasets through long-term longitudinal studies (see for
instance [7] for the immunological factors) and collection
of both environmental and epidemiological data over the

The importance of early cases in Burkina Faso and in a basic Susceptible-Infected modelFigure 6
The importance of early cases in Burkina Faso and in a basic Susceptible-Infected model. (Left) A – Relationship 
between the number of cases during the peak months (from January to April) and the number of early cases (from October 
and December). C – Relationship between the number of early cases (from October and December) and the timing of the 
peak month (the month with the highest number of cases). To produce the panels A and C, we use monthly cases in Burkina 
Faso from 1961 to 2005 (the longest complete monthly time series). (Right) B – Sensitivity of the final number of infected indi-
viduals to the increase of the initial number of infected individuals in a basic Susceptible-Infected (SI) model. D – Relationship 
between the initial number of infected individuals and the timing of the peak month (the month with the highest number of 
cases) in the SI model. The SI model is mainly used here for an illustrative purpose.
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same site [29]. These improvements are necessary but
might not be sufficient to provide highly precise forecasts
since stochastic processes in the transmission could limit
the predictability of the final size of the outbreak. The lim-
its to the precision of EWS for epidemics of infectious dis-
ease have been discussed recently by Drake [23].
According to the author, the characteristics of emerging
diseases to which human populations are highly suscepti-
ble prevent precise forecasts because of the micro-scale
component (contacts within and among households and
communities) whose small variations could induce large
variations in the final size of the outbreak. While the fore-
cast of the EWS based on climate and other environmental
characteristics contain only the macro-scale source of var-
iation and not the micro-scale causes, they can still be
used effectively to define risk indicators rather than pre-
cise forecasts that could be used to better control MCM
disease.
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