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Introduction

Infectious diseases are arguably one of the best subjects
on which to apply Darwin’s natural selection theory;
first, because parasites tend to evolve rapidly (due to
short generation times and large population sizes, Price,
1977) and, second, because disease evolution raises
important public health and socio-economical issues
(Palumbi, 2001). The 1980s saw the emergence of a
new field today known as ‘evolutionary epidemiology’
that takes into account disease evolution during an
epidemic (Anderson & May, 1982). More recently,
arguably because of the human immunodeficiency virus
(HIV) pandemic, it has been realized that diseases also
evolve continuously inside hosts (Holmes et al., 1992)
and that this evolution can shape the course of an
infection (Nowak et al., 1990). Here, I develop a

framework that can combine theory and data to study
intrahost evolutionary dynamics. This framework can be
applied to micro-parasites that cause chronic infections
[e.g. viruses such as HIV and hepatitis C (Alfonso et al.,
2005; Lemey et al., 2006) or bacteria such as Helicobacter
pylori (Suerbaum & Josenhans, 2007)], but also to other
diseases such as cancer (Merlo et al., 2006).
Currently, one of the most developed frameworks used

to study within-host evolution is based on the quasispe-
cies theory, that is, the evolution of a population of RNA
(or DNA) sequences that replicate with a high mutation
rate and where each sequence has a given fitness (Eigen
et al., 1988). Studies based on this theory use molecular
data and/or mathematical tools to follow the evolution of
the viral genome during an infection. There has been a
lively debate in the field concerning the applicability of
the quasispecies theory and highlighting its links with
population genetics seems to be helpful for addressing
the strengths and limitations of this theory (Wilke, 2005).
A first limitation lies with the definition of the fitness
landscape, which is usually assumed to be constant [but
see Kamp (2003) for a discussion on how landscapes can
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Abstract

The evolution of infectious diseases is known to affect epidemiological
dynamics, but, for some viruses and bacteria, this evolution also takes place
inside a host during the course of an infection. I develop an original approach
to study intrahost evolutionary dynamics of quantitative disease traits. This
approach can be expressed mathematically using the ‘Price equation’ frame-
work recently developed in evolutionary epidemiology. This framework
combines population genetics and within-host population dynamics models
to identify trade-offs that affect disease intrahost evolution and to predict
short-term evolutionary dynamics of life-history traits. I show that this can be
applied to study the evolution of viruses competing for host cells or to study
the coevolution between parasites and the immune system of the host. This
framework can also easily incorporate experimental data. Studying
intrahost evolutionary dynamics provides insight at the within-host level,
because it allows us to better understand the course of chronic infections, and
at the epidemiological level, because it helps to study multi-scale evolution-
ary processes. This framework can be used to address important biologi-
cal issues, from immune escape to disease evolutionary response to
treatments.
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be shaped by the immune response]. A second limitation
is that quantitative traits are difficult to study with the
quasispecies framework. This second limitation is shared
by many models, as most studies on within-host
evolution mainly focus on qualitative traits, such as
immune evasion or drug resistance (Goulder & Watkins,
2004). For instance, this is the case for the model Kelly
et al. (2003) develop that links population genetics and
population dynamics to study viral rates of evolution (see
their study for further references of models of within-
host evolution). This is also the case of many theoretical
(Nowak et al., 1990) and empirical studies (Shriner et al.,
2006) on HIV that investigate the effect of parasite
diversity on the course of an infection.
Parasite replication rate provides a noticeable excep-

tion to the lack of experimental (and theoretical)
studies on quantitative traits. This rate has been shown
to vary among strains of the same virus species
(Bocharov et al., 2004; Dykes & Demeter, 2007). From
a theoretical point of view, the dominant view is
summarized by Levin & Bull (1994)’s ‘short-sighted’
evolution scenario. They argue that during an infec-
tion, strains with greater replication rates are always
favoured, which can eventually lead to high rates of
host mortality that are not adaptive at an epidemio-
logical level. Several models have investigated this
conflict between levels of selection. Bonhoeffer &
Nowak (1994) assume that there is no within-host
coexistence (a mutant disappears or takes over the host
instantaneously) and their results confirm Levin and
Bull’s verbal reasoning. This model was extended to
study the effect of the duration of the infection and the
epidemiological feedbacks in further details (André &
Godelle, 2006). It was also extended to include
immune dynamics and, for eight different models of
within-host dynamics, viral evolution always decreased
host fitness (Iwasa et al., 2005). Another body of
theoretical work based on kin selection theory predicts
that the evolutionary outcome is less straightforward if
the co-infecting strains are related (Frank, 1996; Chao
et al., 2000; Brown et al., 2002). Finally, recent models
show that if one assumes a trade-off between viral
production rate and the life span of an infected cell
(Gilchrist et al., 2004; Ball et al., 2007), intrahost evolu-
tion favours strains with intermediate replication rates.
The most noticeable feature of these models is that
each of the many strains can have its own replication
rate. However, these models do not study traits other
than replication rate and they usually fail to predict
short-term evolutionary dynamics of the trait. Also,
modelling the stochastic emergence of mutants is often
challenging.
The framework I develop here combines within-host

population dynamics models and population genetics
approaches to study disease intrahost evolution. Contrary
to previous works, this new approach can be used to
study the evolution of any parasite trait (both qualitative

and quantitative). This is made possible by recent
advances in evolutionary epidemiology that are based
on the ‘Price equation’ (Day & Proulx, 2004; Day &
Gandon, 2006, 2007; Gandon & Day, 2009). This Price
equation framework has four advantages: (i) it helps to
identify how (and which) trade-offs can affect within-
host evolution; (ii) it allows for predicting the short-term
evolutionary dynamics of a trait from the genetic com-
position of the parasite population in the host; (iii) it
helps link theory and data; and (iv) it can be applied to
most existing models of within-host population dynam-
ics. To introduce the framework, I first present a simple
case that corresponds to bacteria facing anti-microbial
peptides. Then, I apply this framework to viruses com-
peting for host cells. Finally, I show that the framework
can be used with a general model to study parasite–
lymphocyte coevolution.

Case 1: Gut bacteria facing anti-microbial
peptides

Let us first consider a host in which a diverse parasite
population is attacked by a uniform population of
immune effectors (Fig. 1a). This is the case for gut or
skin bacteria of mammals that face an innate immune
response consisting of anti-microbial peptides that are
synthesised constitutively (this would also be true in
insects or even plants, Hancock & Diamond, 2000). Let us
assume that the bacterial population is genetically diverse
and that it is composed of n different strains. Each strain i
is defined by the values of its traits (here, the replication
rate and the sensitivity to the immune effectors). In this

Bateria
replication

(a)

(b)

Fig. 1 (a) Model of bacteria facing constant immune pressure and (b)

direction of short-term evolution depending on the genetic compo-

sition of the population. Each dot in (b) represents a bacterial strain

in the host with its sensitivity to the immune response (x) on the

x-axis and its replication rate (u) on the y-axis. The large grey dot

represents the average value of the bacterial population and the

arrow indicates the selection pressure on the traits given the current

genetic composition of the population. Further details are available

in Supplementary protocol S2.
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simple case, the density dynamics of bacteria of strain i
within the host are governed by the following equation
(which is the equation of the prey in the classical Lotka–
Volterra predator–prey model):

dXi

dt
¼ ðui # xiYÞXi ð1Þ

where Y is the density of immune effectors, Xi is the
density of bacteria of strain i, ui is their replication rate
and xi is their sensitivity to the immune effectors
(notations are in Table 1).
There are no mutation terms from one strain to

another in this equation. This simplification can be
made because, if the mutation process is not biased
(i.e. if the average trait of the mutant population is
equal to the average trait of the resident population),
the direction of the change of the mean trait values are
not affected (see Case 2 below and Supplementary
text S1). Also, note that the following analysis still
holds if the immune response is a function of time
(Y(t)), as long as it is independent from the bacteria
density.

In Box 1, I use previous results (Day & Gandon,
2006) to derive the equations governing the dynamics
of average values of the traits in the bacterial popu-
lation. The main idea is to track changes in the
proportion of each of the strains composing the
bacterial population. For instance, an increase in

the proportion of the strain with the highest growth
rate will result in an increase in the average growth
rate. More precisely, I find that:

Box 1

This box describes the method used to derive the equation for the trait

dynamics in the first case. The goal is to find the dynamics of average

life-history trait values by using eqn 1 (see Supplementary text S1 for

further details). I here focus on the replication rate but a similar

approach can be derived for the sensitivity to the immune system. The

first step is to write the equation governing the dynamics of the total

density of the bacteria population (XT):

dXT

dt
¼ !u# !xYð ÞXT ð9Þ

where !u and !x are the average values of replication rate and

sensitivity to the immune effector.

By definition, we have

!u ¼
Xn

i¼1

piui ð10Þ

where n is the number of parasite strains in the host, ui is the

replication rate of strain i and pi is the proportion of strain i defined by

pi ¼
Xi

XT
ð11Þ

From eqn 10, we have

d!u
dt

¼
Xn

i¼1

dpi
dt

ui þ
Xn

i¼1

pi
dui

dt
ð12Þ

If we assume that the traits of a given strain do not vary over time,

then the derivative of ui with respect to time is zero and the second

sum in eqn 12 vanishes.

From eqn 11, we get

dpi
dt

¼ 1

XT

dXi

dt
# pi

1

XT

dXT

dt
ð13Þ

Using eqns 1 and 9, we can rewrite this equation as

dpi
dt

¼ ui # !uð Þpi # Y xi # !xð Þpi ð14Þ

Equation 12 then becomes

d!u
dt

¼
Xn

i¼1

piu2
i # !u2 # Y

Xn

i¼1

pixiui # !x!u

 !
ð15Þ

Given that
Pn

i¼1 piu
2
i # !u2 is the variance in u and thatPn

i¼1 pixiui # !x!u is the covariance between u and x, this equation

can be writtenmore simply as in eqn 2a.

More generally, previous approaches (Day & Proulx, 2004; Day &

Gandon, 2006) show that, for any trait h, the dynamics of the average

value of the trait are given by

d!h
dt

¼ Covðhi; riÞ # gð!h# !hmÞ ð16Þ

where the Cov term is the covariance between the value of the trait in

a strain and the fitness of this particular strain (ri), g is the mutation

rate, !h is the average value of the trait and !hm is the average value of

the trait that arise through mutations (see Supplementary text S1 for

further details). If the mutation process is unbiased !h ¼ !hm and the

mutation term goes to zero. This formulation recalls the equation

derived by Price (1970).

Table 1 List of the variables and parameter used.

Case Notation Description

1 Xi Density of bacteria of strain i

n Number of bacterial strains in the host

Y Density of immune effectors

ui Reproduction rate of bacteria of strain i

xi Sensitivity of bacteria of strain i to the immune effectors

ri Fitness of parasites of bacterial strain i

2 S Density of host uninfected target cells

IT Total density of infected cells

VT Total density of free viruses

k host cell production rate

d death rate of target cells

ki Infection rate of viruses of strain i

pi Viral production rate of cells infected by strain i

di Death rate of cells infected by strain i

ci Clearance rate of free viruses of strain i

3 XT Total parasites density

YT Total lymphocyte density

ui Reproduction rate of parasites of strain i

xij Sensitivity of parasites of strain i to lymphocytes of clone j

aij Activation rate of lymphocytes of clone j by

parasites of strain i

l Lymphocyte death rate

An i subscript indicates a value relative to one strain and a T

subscript indicates a total population size (i.e. a sum over all the

strains).
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d!u
dt

¼ VarðuÞ # Y Covðu;xÞ ð2aÞ

d!x
dt

¼ Covðu;xÞ # Y VarðxÞ ð2bÞ

where bars indicate average values (see Box 1), Var
indicates the genetic variance of a trait and Cov a genetic
covariance between two traits in the bacterial population.
What does this simple example tell us? As long as there

is some variance in the bacterial population within the
host, the average replication rate tends to increase
(because the variance term in eqn 2a is always positive)
and the resistance to the immune effectors tends to
decrease (because of the variance in eqn 2b). Only a
positive covariance between these two traits and the
presence of immune effectors (Y > 0) can alter the
evolutionary outcome. Thus, in this example, a trade-
off between bacterial replication and destruction by the
immune effector prevents the evolution towards very
high replication rates.
This illustrates the first use of the Price equation

framework: with the equations governing the dynamics
of the trait, we have an overview of which trade-offs can
affect the evolution of a trait and how. Here, the trade-off
we identify, i.e. that replication increases the sensitivity
to the immune response, has been used to study viral
evolution (Bocharov et al., 2004; Alizon, 2008). Other
trade-offs could of course be considered. For instance, in
a similar model that would include a maximum density
of the total bacterial population that varies among
strains, there could be a trade-off between resource
utilization and replication rate, as shown for Escherichia
coli (King et al., 2004).

The second use of this framework is that, if we know
the strain distribution in a host at a given time (and if we
are able to measure the trait values of each of these
strains), we have access to the variance and covariance
values, that is, to the genetic (co)variance matrix (see
Day & Gandon, 2007). Using eqns 2a and 2b, we can
predict in which direction the system will evolve in the
short-term (Fig. 1b). This is an advantage compared to
current frameworks, in which getting this information
would require to build a simulation with explicit
dynamics of all the strains. This model even allows us
to follow short-term evolutionary dynamics of the trait.
For this, we need the equations describing the dynamics
of the trait along with the equations describing changes
in total bacterial population size and immune effectors.
This is done in the next section with a case that offers
richer dynamics.

Case 2: Viruses competing for host cells

Viruses need host cells to reproduce because they rely on
the cell machinery to carry out their metabolism. Dynam-
ics of viruses infecting host cells in order to produce new
virus have been shown to be accurately described by
ecological models of resource exploitation (Perelson,
2002). As shown in Fig. 2a (and in Supplementary text
S1), susceptible cells (S), can be infected by free viruses of
strain i (Vi) and become infected cells producing these
viruses (Ii). The dynamics of the total densities of infected
cells (IT) and free virus (VT) are given by

dS

dt
¼ k# dS# !kVVTS ð3aÞ

Fig. 2 Evolutionary dynamics in the case of resource competition: (a) model of viruses competing for host cells and (b) dynamics of total

infected cells (IT, grey line) and host target cells (S, black line) densities. (c) Trait evolutionary trajectories in the (d,p) plane. The blue line

(dark grey in the print edition) shows the evolutionary trajectory obtained using the Price equation model and the green line (light grey in the

print edition) shows a trajectory obtained using the semi-stochastic model. The three clouds of dots represent the composition of the viral

population at three different times (10, 20 and 200 days) in the stochastic model. Parameter values are similar to that used in Ball et al. (2007).

Further details are available in Supplementary protocol S2.
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dIT
dt

¼ !kVVTS# !dI IT ð3bÞ

dVT

dt
¼ !pIIT # !cVVT ð3cÞ

where k and d are the (constant) production and death
rates of target cells, !kV is the average rate with which
target cells become infected by free-living viruses, !pI is
the average viral production rate of infected cells, !dI is
the average death rate of infected cells and !cV is the
average clearance rate of free-living viruses. The V
and I superscript indicate if the average value is that of
the free-living or within-cell viral population. Because
the virus can be found inside the cells or free-living, it
is necessary to follow the evolution of the trait in the
two types of environments. The underlying idea is that
if some strains are better adapted to one of the
environments, it biases the strain distribution and thus
affects the average trait value. To take this potential
bias into account, I here use the epidemiological
framework developed by Day & Gandon (2006) to
study spore-producing diseases.

For simplicity, and following previous studies
(Gilchrist et al., 2004; Ball et al., 2007), we will only
focus here on the evolution of two traits: the average
viral production rate (!p) and the average death rate of
infected cells (!d). Also, we will assume that a cell can
only be infected by a single viral strain. If we assume that
the other parameters are constant and that the mutation
process is not biased (see Box 1), the dynamics of the
average values of the traits in each of the two environ-
ments are given by the following equations (see Supple-
mentary text S1):

d!pI

dt
¼ #CovIðp; dÞ þ VTS

IT
!pV# !pI
! "

k ð4aÞ

d!pV

dt
¼ IT

VT
VarIðpÞ þ ð!pI# !pV Þ!pI
# $

ð4bÞ

d!dI

dt
¼ #VarIðdÞ þ VTS

IT
!dV# !dI
! "

k ð4cÞ

d!dV

dt
¼ IT

VT
CovIðd; pÞ þ ð!dI # !dV Þ!pI
! "

ð4dÞ

For a given trait, the equations in the two environ-
ments differ because the selective pressures differ. Each
equation has two terms on its right hand side. The first
term reflects the selective pressure due to the envi-
ronment of the virus and the second term reflects virus
migration from one environment to the other (when a
cell becomes infected or when an infected cell releases
viruses). The variance term in eqn 4b tells us that
higher average production rates (!p) are always selected

for in the free-living stages. Lower production rates can
be selected for in the cells if this trait is positively
correlated with infected cell death rate (eqn 4a). For
the average infected cell death rate (!d), lower rates are
always selected for within cells and higher rates can be
selected for outside the cells if this also increases viral
production rate.
The ratio of infected cells to free viruses has a strong

influence on the evolution of the viral production rate.
In a case where most viruses are within cells (either
because it is an early stage of the infection or because
they are latent strains), the IT/VT ratio is high and
selection within a cell (eqn 4a) mostly depends on the
covariance between the two traits of interest. On the
contrary, outside the cells there is an intense selective
pressure that favours strains with greater values of p
(eqn 4b). Note that the migration term will homogenize
values within and outside cells. In a case where most
viruses are free, we have the exact opposite trend:
selection for low p outside the cells and selection for high
p within the cells. Finally, when the availability of host
target cells (S) decreases, strains that exploit their cells
for a longer time (i.e. with a low value of p) are favoured.
Decreasing S has no direct effect on the selective pressure
on free viruses.
Figure 2b shows the evolutionary dynamics of the

traits using two different methods. The first method is
based on the dynamical system derived using the Price
equation framework (see below), which includes the
seven equations in systems 3 and 4. The second method
is a stochastic simulation with random mutation events,
where the densities of each of the strains in the
population are followed explicitly (see Supplementary
protocol S2 for further details). In both of these cases, it is
necessary to assume a trade-off relationship involving the
traits of interest; otherwise the system evolves towards
infinite production rates and zero mortality of infected
cells. Here, following a model developed to study HIV
infections (Ball et al., 2007), I assume that increasing
production rate (p) comes with a cost in terms of infected
cell death rate (d) (see Supplementary protocol S2). In
other words, a strain cannot be more adapted than the
trade-off allows (i.e. above the dashed curve in Fig. 2c)
but it can be less adapted.
Game-theoretical frameworks can be used to infer

the long-term evolutionary outcome of a system
(Hammerstein, 1996; Geritz et al., 1997), for example,
finding evolutionary stable strategies (or ESS; May-
nard-Smith & Price, 1973) and determining if they are
convergent stable, that is, if the ESS can be reached
(Christiansen, 1991). This long-term outcome depends
on the shape of the trade-off curve (Levins, 1962; de
Mazancourt & Dieckmann, 2004). In this specific
example, the optimal production rate that maximizes
the total number of viruses produced by a cell before it
dies can be derived analytically (Gilchrist et al., 2004;
Ball et al., 2007).
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The Price equation framework allows us to analyse
short-term dynamics. However, we need to make an
assumption in order to give the system dynamic suffi-
ciency, i.e. to be applied recursively over many gener-
ations of cells (for a detailed discussion, Gardner et al.,
2007). Here, we assume that changes in genetic variances
and covariances can be neglected on the short-term,
which is appropriate if the mutation process is not biased
(see Supplementary text S1). This is known as the
assumption of constant variance in quantitative genetics
models. Other approaches could be used, for example,
estimating higher moments of the trait distribution
(Gardner et al., 2007). The model predicts that the
production rate will increase and that the death rate of
an infected cell will decrease until the trade-off curve is
reached (the blue curve, dark grey in the print edition, in
Fig. 2c). The simulation was stopped when the popula-
tion reached the trade-off curve because the boundary
then biases the mutation process, which greatly affects
the genetic variances and covariances. However, the
trade-off curve represents the best production rate
possible for a given infected cell death rate, therefore
we expect the population to evolve on the trade-off curve
to reach the potential ESS. In this particular case, this is
confirmed by the stochastic model (the green curve, light
grey in the print edition, in Fig. 2c), which shows an
increase and then a decrease in production rate. The
evolutionary trajectory in the stochastic model is more
variable because the simulations are initiated with a
single infecting strain and viral diversity has to build up
from random mutations.
These results corroborate previous results showing that

the early optimum strategy is to have a high value
production rate because there are many susceptible cells
to infect (Ball et al., 2007). As the density of susceptible
cells decreases (Fig. 2b), so does the optimal production
rate. Similar results have also been derived in epidemi-
ology to study virulence evolution (Lenski & May, 1994,
Day & Proulx, 2004). Finally, in this case, the trajectory
of the average trait values within the cell or outside the
cells are almost identical (figure not shown) because of
rapid diffusion from one environment to the other (due

to high production rates). Viruses with lower production
rates would exhibit more heterogeneity between the two
environments.

The Price equation model can also be used to
compare short-term viral evolutionary responses to
different types of treatments. Figure 3a shows trait
dynamics in the case of treatments targeting infected
cells or free-living viruses. Treatments are modelled by
adding an extra death term ()sIIT or )sVVT) into eqns 5
or 6 (see Supplementary protocol S2). Targeting
infected cells selects for higher production rates. This
comes from the fact that the fitness of a strain strongly
depends on the within-cell life stage. Similarly to
vaccines that can select for higher virulence at an
epidemiological level (Gandon et al., 2001; Mackinnon
& Read, 2004), this framework suggests that treatments
can also select for higher viral production rates.
Moreover, treatments targeting infected cells will be
more efficient than treatments targeting free viruses (in
terms of maintaining the density of target cells, Fig. 3b,
and decreasing viral load, Fig. 3c) but they also select
for higher production rates if the virus survives to the
treatment. A possible extension of this model could be
to treat the sensitivity to the treatment as a trait of a
strain. This would be useful to study the evolution of
the cost of resistance to treatments, which involves
trade-offs between sensitivity to drugs and parasite
replication rate.

Case 3: Pathogen–lymphocyte
coevolution

The immune response acts as a major selective pressure
on parasite evolution. Nonspecific immunity is dis-
cussed above, but, in many organisms, parasite cells or
host-infected cells can be identified by specific immune
cells, which triggers the proliferation of lymphocytes
that are extremely efficient at fighting the infection.
Predator–prey population dynamics models inspired
from ecology can be used to describe parasites facing
an immune response (Nowak & May, 2000; Alizon &
van Baalen, 2008). Here, I model explicitly the whole
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Fig. 3 Effect of anti-viral treatments on evolutionary dynamics in a case without treatment (in black, see also Fig. 2), in a case with a treatment

targeting the free viral particles (in dark grey) and in a case targeting infected cells (in light grey). (a) Evolutionary dynamics of the traits,

(b) density dynamics of host target cells and (c) density dynamics of free viral particles. Treatment begins after 20 days. Targeting infected

cell is the most effective strategy to decrease viraemia but it also selects for higher viral production rates. Parameter values and further details

on how the model with treatment is built are available in Supplementary protocol S2.
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diversity of the immune response, which introduces a
coevolutionary process: parasites are selected depending
on their growth rates and their antigens, whereas
immune cells are selected depending on their receptor
(see Fig. 4). More precisely, there are n parasite strains
and m lymphocyte clones. Each lymphocyte clone can
destroy a parasite strain with a given efficiency (rij)
and each parasite strain elicits the proliferation of each
of the lymphocyte clones at a given rate (aij). Dynamics
of parasite strains and lymphocyte densities are here
given by the following equation system:

dXi

dt
¼ ui #

Xm

j¼1

xijYj

 !

Xi ð5aÞ

dYj

dt
¼

Xn

i¼1

aijXi # l

 !
Yj ð5bÞ

where ui is the replication rate of parasites of strain i,
aij is the activation rate of the lymphocytes of clone j
by parasite strain i, xij is the sensitivity of parasite
strain i to lymphocytes of clone j, and l the death rate
of the lymphocytes. Lymphocytes are assumed to differ
only in the way they are activated by, and in the way
they destroy parasite strains. In a system with total
specificity, we would have one lymphocyte clone for
each parasite strain (n ¼ m) and only the diagonal
terms of the a and r matrices would be nonzero. On
the contrary, if cross-immunity is allowed, some par-
asite strains will activate more than one lymphocyte
clone and some lymphocyte clones will destroy more
than one parasite strain.

The equations governing variations in total parasite
and lymphocyte densities (XT and YT respectively) are

dXT

dt
¼ !u# x&&YTð ÞXT ð6aÞ

dYT

dt
¼ a&&XT # lð ÞYT ð6bÞ

where !u is the average parasite replication rate, x•• is the
average parasite sensitivity to the average lymphocyte
population, a•• is the average lymphocyte proliferation
rate for an average parasite population and l is the

lymphocyte death rate (here assumed to be constant
among all the lymphocyte clones). In this case, both the
parasite and the lymphocyte populations are diverse,
which means that some traits can be expressed at four
different levels: a parasite of strain i interacting with a
lymphocyte of clone j (xij and aij), a parasite of strain i
interacting with an average lymphocyte of the lympho-
cyte population (xi• and ai•), a lymphocyte of clone j
interacting with an average parasite in the parasite
population (x•j and a•j) and, finally, the interaction
between an average parasite and an average lymphocyte
(x•• and a••).
As shown in supplementary material S1, if we assume

that the mutation process is not biased, the dynamics of
the parasite replication rate are given by the following
equation:

d!u
dt

¼ VarðuiÞ # YTCoviðui;xi&Þ ð7Þ

where ui is the replication rate of strain i and xi• is the
sensitivity of strain i to the average lymphocyte popula-
tion.Covi indicates a covariance in theparasite population.
As in the first case, variance in the replication rate in the
parasite population selects for higher growth rates and
covariance between the replication rate of a strain and its
sensitivity to the average lymphocyte population (xi•)
has the opposite effect.
For the evolutionary dynamics of other traits of

interest (a and x), deriving the equations is less
straightforward. After some calculations (see Supple-
mentary text S1), we find that

dx&&

dt
¼ XTEi Covjðxij; a&jÞ

# $
þ Covðxi&;uiÞ # YTVarðxi&Þ

ð8aÞ

da&&
dt

¼ XTVarða&jÞ þ Ej Coviðui; aijÞ
# $

# YTEj Coviðaij;xi&Þ
# $

ð8bÞ

where Ei is an average over i.
These results are complex but this is not surprising since

these equations encompass all the immunological changes
that can occur during an infection, from parasite immune
evasion to cross-reactivity of the immune response. Of
course, finding all the variances and covariances involved
in eqns 8a and 8b is likely to be impossible, but simplifying
assumptions can be made. Also, some conclusions can
already be drawn from these general equations.
To analyse eqns 8a and 8b, we need to bear in mind

that some selective forces act through the parasite
population and others act through the lymphocyte
population. Equation 8a tells us that, as expected,
variance in the parasite sensitivity to the average
immune response (xi•) selects for lower average values
of x over all parasite strains. This evolution towards total
escape from the immune response will not occur if
decreasing x decreases the replication rate of the strain

Fig. 4 Model of lymphocyte–parasite coevolution. The density of

parasites of strain i is denoted Xi and the density of lymphocytes of

clone j is denoted Yj. Other notations are in Table 1.
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(ui) or if it increases immune proliferation (a). Finally the
sum of covariances in eqn 8a (the first term from the
right hand side) comes from the lymphocyte population:
there is selection for higher values of x if there are
parasites (if XT > 0) and if there is a positive correlation
between the sensitivity of a lymphocyte clone j to the
average parasite population (a•j) and the efficiency with
which this clone kills parasites of strain i (xij). This term
actually reflects the cross-reactivity of the immune
response. It contains an average over all parasite strains
because a parasite strain can activate more than one
lymphocyte clone and because a lymphocyte clone can
target more than one parasite strain.
In eqn 8b, the first term comes from the lymphocytes. It

implies that as long as the host is infected and there is
variance in the lymphocyte population, there will be
selection for higher activation rates. The second term
comes from the evolution of the parasite. It tells us that the
average activation rate increases if there is a positive
correlation between lymphocyte activation rate and par-
asite growth rate. This can be seen as a manifestation of a
coevolutionary arms race between hosts and parasites.
Finally, the last term comes from the evolution of the
parasite and it tells us that a•• decreases if there is a positive
correlation between immune activation rate and killing
rate.
With this formulation, the parasite density is followed

directly, that is, the resources on which the virus feeds
are not modelled explicitly. Possible extensions could be
achieved by adding a term for host target cells or a more
complicated growth function (e.g. logistic growth func-
tion). This would complicate the approach but not
invalidate it. Nevertheless, this case with parasite–lym-
phocyte coevolution illustrates the breadth of the Price
equation approach by showing that it can be applied to
different models of intrahost dynamics.

Discussion

Many diseases evolve over the course of an infection;
however, intrahost evolution is often assumed to be a
discrete event. In the case of antibiotic resistance for
instance, such an assumption implies that all the bacteria
infecting a host suddenly become resistant. I develop an
approach that combines population genetics and popu-
lation dynamics to follow the dynamics of the evolu-
tionary process. This is important for two reasons: first
because intrahost evolutionary dynamics can affect the
course of an infection and second because there can be
complex feedbacks between selective pressures at the
within- and at the between-host levels.
Evolutionary dynamics are intensively studied in

epidemiology (Dieckmann et al., 2002) but the specificity
of intrahost dynamics, illustrated by the complexity of
the immune system, calls for a specific approach. Current
studies of within-host evolution are based either on
the quasispecies framework or on game-theoretical

frameworks. In the former, the fitness landscape is
generally assumed to be constant and it is also difficult
to track evolutionary trajectories of quantitative traits. In
the latter, fitness values are relative and quantitative
traits can be studied but it is more difficult to link results
to data and short-term dynamics are often difficult to
analyse. Kelly et al. (2003) also developed a model that
links population genetics and population dynamics but
they assume that within-host dynamics are at equilib-
rium and they only follow the accumulation of genetic
diversity within the viral population.

The framework developed here is inspired from appli-
cations of the Price equation to epidemiology (Day &
Proulx, 2004; Day & Gandon, 2006, 2007; Gandon & Day,
2009) and it allows one to study the intrahost evolution of
quantitative traits, even if the cell population dynamics
are not at equilibrium. First, this framework can be used
to derive an equation that describes how (and which)
trade-offs affect the evolution of the average value of a
trait. Second, one can combine the equations for the traits
dynamics and the equations for the cell population
dynamics to predict the short-term evolutionary trajec-
tories of traits of interest. These intrahost evolutionary
dynamics cannot be predicted on the long term because,
in order to make the system dynamically sufficient, we
assume that genetic (co)variance in the population are
constant (see Case 2 and Gardner et al., 2007). As the
parasite population evolves, its genetic composition will
change. This will affect the genetic variances and covari-
ances if the mutation process is biased (i.e. if the average
trait of mutants differs from the average trait in the
population), which is the case when the population
reaches a trade-off boundary. In other words, this method
cannot tell us if there is an evolutionary stable equilib-
rium (ESS) in the system and whether or not it can be
reached. To make such long-term predictions with the
Price equation framework, it would be necessary to find a
way to update these covariances as the system evolves.
This way, once the population has reached an ESS, the
variances and covariances cancel each other so that
equations driving the dynamics of the trait are all zero.
The problem is that this updating is likely to be as
complicated as a stochastic model that would track the
population dynamics of all the parasite strains. However,
this limitation of the model does not seem to be a major
issue for two reasons. First, even though rates of within-
host evolution can be high, it is possible that the parasite
population may not have the time to reach its final state
because the duration of an infection is limited (recovery
or host death can occur). In this case, the short-term
evolutionary dynamics are the only relevant dynamics.
Second, if we are interested in the long-term outcome, we
can use other frameworks, such as adaptive dynamics
(Geritz et al., 1997), which rely heavily on assumptions
about shapes of trade-off curves (but see deMazancourt &
Dieckmann, 2004) and are more difficult to link to data
than the Price equation framework.
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There are several ways to extend this approach to
address specific biological questions. For instance, repli-
cation rates might vary among populations of infected
cells (this is the case for HIV in the gut, van Marle et al.,
2007). Such heterogeneity among host cells could be
added to the second case developed here. In the same
example, we also assumed that cells could not be infected
by more than one viral strain. However, cell co-infections
are known to occur and they can affect viral evolution,
especially through recombination (Levy et al., 2004).
Finding a way to introduce co-infections in the Price
equation framework is an open question, even in
epidemiology. Another extension concerns the evolu-
tionary response to treatments. The framework could be
used to study the evolution of parasite resistance to
treatments by introducing a quantitative trait. As shown
in Day & Gandon (2007), it would also be possible to
predict the rate of parasite evolution. Finally, the muta-
tion process is here assumed to be unbiased. Experimen-
tal data on such biases could be introduced in this
framework to better understand the effect of mutation on
the course of an infection.

Existing data on intrahost evolution mostly concerns
qualitative traits, but there are some data on the
replication rate of viruses such as HIV (Dykes & Demeter,
2007; Tebit et al., 2007). Current experimental studies
tend not to follow changes in average trait values during
the course of an infection. There is a practical reason for
this: many rapidly mutating diseases (such as HIV or
hepatitis C) are detected after the initial acute stage,
which means we often lack part of the dynamics.
Moreover, strain diversity can vary a lot depending on
which organ the sample is taken from Frost et al., (2001),
which is likely to also affect the average trait value.
However, in the case of HIV for instance, some
approaches have been developed that allow one to
estimate the production rate of a mixture of strains
isolated from a patient in vitro (Dykes & Demeter, 2007).
Studying samples collected over the whole duration of
an infection would give us information on the evolution
of the average value of a trait during the course of an
infection. A way to test the predictions made by the
model is to test qualitative predictions. For instance, the
result that different types of treatments trigger different
evolutionary responses does not require knowledge of
the whole parasite diversity in the host but only the
average trait values before and after the treatment.
Overall, this approach calls for the collection of multiple
samples from hosts at different stages of their infection,
which could be done for diseases as closely monitored as
HIV or hepatitis C.

Finally, this approach has implications for ‘nested’
models, which link within-host dynamics to epidemiolog-
ical dynamics (Mideo et al., 2008). These models are
especially useful for tracking parasite evolution at the
epidemiological level, but, currently, they ignore intrahost
evolution. In the case of rapidly evolving diseases such as

HIV, combining intrahost evolution and trade-offs at the
epidemiological level (Fraser et al., 2007) could prove to be
essential for understanding the biology of the disease.
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