Supplemental Data

Pathogen-Driven Selection and Worldwide HLA Class I Diversity

Franck Prugnolle, Andrea Manica, Marie Charpentier, Jean-François Guégan, Vanina Guernier, and François Balloux

Supplemental Experimental Procedures

Human Genetic Diversity at HLA Class I Genes (A, B, and C) We retrieved allelic frequencies for HLA genes from 61 human populations distributed all over the world from the dbMHC database (National Center for Biotechnology Information [NCBI]; http:// www.ncbi.nlm.nih.gov/mhc/). More details about those populations are presented in Table S1. All individuals were genotyped with the same standardized sequence-specific oligonucleotide hybridization (SSO) method (see database for more details). We limited the study to class I genes (A, B, and C). From this, we computed the genetic diversity at HLA class I genes within each population, excluding populations with unclear recent ancestry (e.g., African Americans). Genetic diversity was computed as the expected heterozygosity unbiased estimator

$$[2n/(2n-1)] \Big[1 - \sum_{i=1}^{k} \hat{p}_{i}^{2} \Big]$$

(where *n* is the number of individuals within each population, *k* is the number of distinct alleles, and \hat{p}_i is the relative allele frequency of allele *i* in the sample). For this computation, the frequencies of all alleles, even those that were distinct by only one nucleotide substitution, have been considered. One nucleotide substitution can have a strong effect on the efficiency of HLA proteins for pathogen defense, as shown in several studies (see, for example, [S1]), and, hence, two alleles distinct by one nucleotide substitution have been considered equivalent to two alleles distinct by 100 substitutions. Incidentally, this approach also facilitates comparisons between our HLA diversity measure and microsatellite diversity as measured in our previous study relating human genetic diversity and geographic distance from Africa [S2].

Presence/Absence Matrix of Pathogens and Pathogen Richness

A matrix of presence/absence of pathogens for 224 countries was extracted from the GIDEON database (Global Infectious Diseases and Epidemiology Network; http://www.gideononline.com), published by the Tel Aviv Medical Centre. In this database, presence/ absence of pathogens in each country is based on the standardized statistics reported by the World Health Organization, National Health Ministries, abstracts of major international meetings, and epidemiology journals. The database is updated weekly.

The matrix of species presence/absence provides distributional information about which species naturally occur in which countries without any reference to their prevalence. Only species that are naturally transmitted in the countries were recorded, meaning that cases of disease transmission linked to immigration or tourism were not taken into account. Pathogen species that were recently eradicated from a country were also considered to be present (e.g., autochthonous malaria in Croatia was officially eradicated in 1962). Obviously, some disease agents are recorded in all countries (e.g., measles and influenza), whereas some others are only present in few, if not only one, countries (endemic species such as the Sabia virus, responsible for the Brazilian hemorrhagic fever). More information can be found at http://www.cyinfo.com/ and in [S3]. Because HLA class I genes (A, B, and C) are mainly involved in the presentation and recognition of intracellular pathogens [S4], we only considered intracellular disease agents (viruses and obligate and facultative intracellular bacteria and protozoa with at least one intracellular stage; see Tables S3-S5). Because no standardized information on pathogen prevalence was available, we simply compiled pathogen richness as the number of distinct intracellular disease agents (number of pathogen species) known from countries from which human populations with HLA information originate.

Human Demography, Neutral Diversity, and Geographic Distance from Africa

Geographic distance of current populations from East Africa along likely ancient colonization routes is strongly correlated to their neutral genetic diversity (H_s^n) ($r^2 = 85\%$) [S2]. This correlation is even stronger ($r^2 = 87\%$) when we use $H_s^{n*} = \text{Log } [H_s^n/(1-H_s^n)]$ instead of H_s^n . Geographic distance from Africa can therefore be used to disentangle the effect of past migrations from selection on HLA diversity of human populations. To estimate geographic distance of each population from the postulated East African origin of modern humans, we used a newly developed algorithm based on graph theory. The method is fully described in [S2].

Statistical Analyses

Because both geographic distances from East Africa and pathogen richness are used as two independent potential explanatory variables of the HLA diversity in human populations, we first tested for their potential collinearity. No relationship between pathogens and geographic distances from East Africa was found (e.g., for total pathogen richness, p = 0.36), and hence these two predictors were treated as independent.

The PDBS hypothesis was tested with S-PLUS 2000 (Mathsoft) by fitting a weighted Generalized Linear Model with a Gaussian error structure [S5], after transformation of the response variable H_{S}^{HLA} (HLA genetic diversity) into the synthetic variable $H_S^{HLA*} = \text{Log} [H_S^{HLA}]$ $(1-H_S^{HLA})$]. We fitted the model H_S^{HLA*} = Dist. Africa + Path. Rich. + Constant, where: H_s^{HLA*} corresponds to the transformed HLA diversity computed in each population and weighted by the inverse of the number of observations within each country to avoid giving too much weight to populations that come from the same country and, hence, share the same predictor variables; Dist. Africa is the geographic distance of HLA-typed populations to the postulated East African origin; and Path. Rich. is total pathogen richness, that is, the total number of intracellular human pathogen species known from within each country. This model allows us to first account for the effect of past human colonization history on HLA diversity (via the variable Dist. Africa) and to test specifically for the effect of pathogen richness on the remaining unexplained variance. The significance of the different variables was assessed with an F-test after a backward stepwise procedure [S5]. When an effect of pathogen richness on HLA diversity was detected, we a posteriori tested for homoscedasticity between samples, with Levene's tests [S5]. No significant deviation from homoscedasticity was detected in any of our models. Cook distances were also used to graphically assess the influence of each observation on the regression. When observations seemed to be overinfluential, they were deleted from the dataset, and the regression analysis was rerun. This procedure never changed the results qualitatively.

Because of the collinearity between virus, bacteria, and protozoa richness, the PDBS hypothesis was tested separately for each aetiological group through independent weighted regression models. For each model, Dist. Africa was again entered as a covariate to account for the effect of human settlement history on HLA diversity.

An alternative, more complete geographic model including sampling latitude was also considered because latitude is a good proxy for climate and could thus provide some information on the environment in which the population evolved. In this model, the absolute latitude of the countries from which populations come was entered as another explanatory variable to test whether geography alone S2

Table S1. Human HLA-Typed Populations Used in the Study (from the dbMHC Database)				
Population	Sampling Site	Dist. Africa (km)	H _s ^{HLA}	Pathogen Richness
African Populations				
Kenyan 142 Kenyan Highlander Kenyan Lowlander	Kenya Kenya Kenya	950 950 950	A (0.945), B (0.961), C (0.899) A (0.929), B (0.948), C (0.889) A (0.941), B (0.945), C (0.905)	94 (47, 10, 31, 6) 94 (47, 10, 31, 6) 94 (47, 10, 31, 6)
Doggon Mandenka Zulu	Mali Senegal South Africa	4653 5904 4665	A (0.897), B (0.958), C (0.843) A (0.922), B (0.955) A (0.951), B (0.952), C (0.927) A (0.935), B (0.968), C (0.917)	83 (38, 10, 30, 5) 91 (47, 8, 30, 6) 89 (43, 11, 29, 6) 97 (49, 9, 33, 6)
Zambian Shona Chaouya	Zambia Zimbabwe Morocco	2781 3362 5393	A (0.303), B (0.303), C (0.317) A (0.899), B (0.952), C (0.904) A (0.920), B (0.944), C (0.918) A (0.930), B (0.967)	79 (37, 8, 29, 5) 82 (41, 8, 29, 4) 75 (34, 8, 28, 5)
Metalsa	Morocco	5393	A (0.926), B (0.954)	75 (34, 8, 28, 5)
American Populations				
Yupik Brazilian Guarani-Kaiowa Guarani-Nandewa Seri Mestizos Amerindian Pari	Alaska (Canada) Brazil Brazil Brazil Mexico Mexico United States	14831 28169 28169 28169 21051 21051 19311 25749	A (0.622), B (0.842), C (0.778) A (0.908), B (0.965) A (0.707), B (0.987), C (0.768) A (0.765), B (0.932), C (0.816) A (0.653), B (0.756) A (0.879), B (0.978), C (0.887) A (0.872), B (0.946), C (0.915) A (0.872), B (0.946), C (0.756)	89 (44, 9, 32, 4) 104 (53, 10, 33, 8) 104 (53, 10, 33, 8) 104 (53, 10, 33, 8) 92 (41, 11, 32, 8) 92 (41, 11, 32, 8) 114(60, 13, 35, 6) 72 (47, 8, 20, 7)
Fast Asian Populations	Venezuela	23740	А (0.303), В (0.733), С (0.773)	07 (47, 0, 30, 7)
Okinawan Ryukyan Korean 200 Malay Chinese Han-Chinese 149 Han-Chinese 572 Singapore (Chinese) Tuva Buryat Ami 97 Atayal Bunun Hakka Minnan Paiwan 51 Pazeh Puyuma 49 Rukai Saisiat Siraya Thao Toroko	Hawaii (Japan) Japan Korea Singapore (Malaysia) Rep. of China Singapore (Rep. of China) Rep. of China Singapore (Rep. of China) Russia Russia Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan Taiwan	12706 12706 11148 12743 8820 8820 8820 8820 8388 9732 11165 11165 11165 11165 11165 11165 11165 11165 11165 11165 11165 11165 11165 11165 11165	A (0.819) , B (0.908) , C (0.862) A (0.827) A (0.874) , B (0.946) A (0.833) , B (0.954) , C (0.908) A (0.855) , B (0.934) , C (0.881) A (0.862) , B (0.956) A (0.853) , B (0.991) A (0.869) , B (0.936) A (0.869) , B (0.936) A (0.877) , B (0.959) , C (0.926) A (0.910) A (0.552) , B (0.774) , C (0.816) A (0.552) , B (0.774) , C (0.816) A (0.552) , B (0.792) , C (0.825) A (0.608) , B (0.832) , C (0.816) A (0.800) , B (0.915) , C (0.863) A (0.838) , B (0.911) , C (0.872) A (0.254) , B (0.797) , C (0.695) A (0.790) , B (0.906) , C (0.881) A (0.579) , B (0.842) , C (0.283) A (0.403) , B (0.843) , C (0.729) A (0.638) , B (0.603) , C (0.525) A (0.771) , C (0.794) A (0.594) , B (0.771) , C (0.789)	81 (36, 11, 29, 5) 81 (36, 11, 29, 5) 78 (34, 11, 30, 3) 89 (42, 11, 31, 5) 94 (42, 12, 34, 6) 94 (42, 12, 34, 6) 94 (42, 12, 34, 6) 94 (42, 12, 34, 6) 94 (42, 12, 34, 6) 96 (46, 14, 31, 5) 96 (46, 14, 31, 5) 96 (46, 14, 31, 5) 77 (34, 9, 29, 5)
Tsou Yami Thai European Populations	Taiwan Taiwan Singapore (Thailand)	11165 11165 9890	A (0.373), B (0.853), C (0.803) A (0.581), B (0.763), C (0.758) A (0.873), B (0.938), C (0.899)	77 (34, 9, 29, 5) 77 (34, 9, 29, 5) 84 (38, 11, 31, 4)
Bulgarian Croatian Finn 90 Irish Czech Georgian	Bulgaria Croatia Finland Ireland Czech Republic Rep. of Georgia	4469 4387 6764 7244 5461 4126	A (0.819), B (0.905), C (0.905) A (0.874), B (0.946) A (0.799), B (0.968), C (0.901) A (0.848), B (0.909), C (0.886) A (0.861), B (0.959), C (0.914) A (0.846), B (0.941), C (0.909)	83 (39, 9, 30, 5) 83 (37, 11, 30, 5) 76 (37, 8, 28, 3) 72 (34, 7, 27, 4) 80 (38, 8, 30, 4) 84 (41, 7, 31, 5)
Middle East Populations				
Arab Druze Omani Kurdish	Israel Oman Rep. of Georgia	2802 5052 4126	A (0.935), B (0.960), C (0.912) A (0.907), B (0.929) A (0.936), B (0.954), C (0.896)	83 (40, 7, 31, 5) 76 (34, 11, 27, 4) 84 (41, 7, 31, 5)

(continued)

Table S1. Continued				
Population	Sampling Site	Dist. Africa (km)	H _s ^{HLA}	Pathogen Richness
Oceanian Populations				
American Samoan	A. Samoa	22687	A (0.825), B (0.879), C (0.879)	57 (30, 3, 22, 2)
Cape York	Australia	16102	A (0.801), B (0.871), C (0.849)	85 (40, 10, 32, 3)
Groote Eylandt	Australia	16102	A (0.747), B (0.845), C (0.812)	85 (40, 10, 32, 3)
Kimberley	Australia	16102	A (0.515), B (0.755), C (0.742)	85 (40, 10, 32, 3)
Yuendumu	Australia	16102	A (0.700), B (0.837), C (0.862)	85 (40, 10, 32, 3)
Filipino	Philippines	14470	A (0.842), B (0.945), C (0.846)	81 (39, 11, 28, 3)
Ivatan	Philippines	14470	A (0.781), B (0.887), C (0.842)	81 (39, 11, 28, 3)

Sampling Site gives the country where the populations have been sampled from. When the country of origin of the populations differs from the sampling location (e.g., for ethnic groups that have migrated recently), this information is indicated in parentheses. The "country of origin" is the country from which epidemiological data have been used, except for the Yupik population, for which epidemiological data were recorded from Canada because no epidemiological data were available from Alaska. Dist. Africa is the distance of each population from East Africa. H_s^{HLA} gives the HLA class I gene diversities, when data are available. Pathogen Richness refers to the total pathogen richness observed within each country, plus the richness in viruses, in obligate and facultative intracellular bacteria, and in intracellular protozoa respectively (in parentheses).

could explain the observed genetic diversity observed at HLA genes (see Table 2 in the main text for results).

Finally, to ensure that pathogen diversity is not linked to genetic diversity in general, we fitted the same regression models to a set of markers that should not be influenced by the richness of intracellular pathogens: one locus of HLA class II (HLA DRB1, for which allele frequencies were retrieved from the dbMHC database) and ten microsatellite loci randomly chosen from the 377 reported in Rosenberg et al. [S6] and previously used in [S2]. For these loci (see Table

Table S2. Regressions between HLA A and B Genetic Diversity (H_{s}^{HLA*}) , Geographic Distance from Africa (Dist. Africa), and Intracellular Pathogen Species Richness

		HLA A	HLA B	
n Model I		48	48	
Dist. Africa	r ²	39%***	10%*	
Path. Rich.	r ²	6%*	14%**	
Model II				
Dist. Africa	r ²	39%***	10%*	
Viruses	r ²	8%*	14%**	
Model III				
Dist. Africa	r ²	39%***	10%*	
Bacteria O	r ²	1.9% ns	6% ns	
Model IV				
Dist. Africa	r ²	39%***	17%***	
Bacteria F	r ²	<1% ns	7%*	
Model V				
Dist. Africa	r ²	39%***	10%*	
Protozoa	r ²	6.5%*	15%**	

In this table, we reanalyze the HLA A and B datasets after subsetting them to include only the populations that are available for HLA C (n = 48). Regression models I-V were fitted independently according to the procedure detailed in Statistical Analyses. Path. Rich., Bacteria O, and Bacteria F denote species richness of all intracellular pathogens and obligate and facultative intracellular bacteria, respectively. n represents the number of populations genotyped, and r² the proportion of variance explained by each independent variable. For all regressions between pathogen richness and HLA class I diversity, the sign of slopes was always positive. P values for F tests: *** < 0.001; ** < 0.01; * < 0.05; ns, non-significant.

2 for details), we expect only a significant relationship between genetic diversity and geographic distance from East Africa, but no relationship between genetic diversity and pathogen richness.

Supplemental References

- S1. Gao, X.J., Nelson, G.W., Martin, M.P., Phair, J., Kaslow, R., Goedert, J.J., Buchbinder, S., Hoots, K., Vlahov, D., O'Brien, S.J., et al. (2001). Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N. Engl. J. Med. 344, 1668-1675.
- S2. Prugnolle, F., Manica, A., and Balloux, F. (2005). Geography predicts neutral genetic diversity of human populations. Curr. Biol. 15, R159-R160.
- S3. Guernier, V., Hochberg, M.E., and Guegan, J.F. (2004). Ecology drives the worldwide distribution of human diseases. PloS Biol. 2: e141 10.1371/journal.pbio.0020141.
- S4. Hughes, A.L., and Yeager, M. (1998). Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32, 415-435.
- S5. Venables, W.N., and Ripley, B.D. (1999). Modern Applied Statistics with S-Plus (Berlin: Springer).
- S6. Rosenberg, N.A., Pritchard, J.K., Weber, J.L., Cann, H.M., Kidd, K.K., Zhivotovsky, L.A., and Feldman, M.W. (2002). Genetic structure of human populations. Science 298, 2381-2385.

Table S3. Family, Genus, Species Common Name, and Name of the Associated Disease for Viruses Reported from at Least One Country Included in the Study

Disease Name	Virus
Adenovirus	Adenoviridae, Adenovirus, Enteric strains classified in genus Mastadenovirus
Argentine hemorrhagic fever	Arenaviridae, Tacaribe complex, Arenavirus; Junin virus
Barmah Forest disease	Togaviridae Alphavirus: Barmah Forest virus
Bolivian Hemorrhagic fever	Arenaviridae, Tacaribe complex, Arenavirus: Machupo virus
Brazilian hemorrhagic fever	Arenaviridae, Tacaribe complex, Arenavirus: Sabia virus
California encephalitis group	Bunyaviridae, Orthobunyavirus: La Crosse, California encephalitis, Jamestown Canvon
Chikingunya	Togaviridae, Alphavirus: Chikingunya virus.
Colorado tick fever	Beoviridae, Coltivirus: Colorado tick fever virus
Conjunctivitis-viral	Picornavirus, Adenovirus
Cowpox	Pozviridae Orthopozvirus: Cowpoz virus
Crimean-Congo hemorrhagic fever	Bunyaviridae Nairovirus: CCHE virus
Cytomegalovirus infection	Hernesviridae, Retabernesvirinae: Human bernesvirus 5 (Cytomegalovirus)
Dengue	Elaviviridae, Elavivirus: Denque virus
Eastern equine encenhalitis	Togaviridae, Alphavirus: Fastern equine encephalitis virus
Ebola fever	Mononegavirales Filoviridae Filovirus: Fhola virus
Enterovirus infection	Picornaviridae: Coxsackievirus, ECHO virus, Enterovirus, Parechovirus
Gastroenteritis-viral	Calicivirus (Norwalk, Hawaii, Sapporo, Snow Mountain, Norovirus); Torovirus or Astrovirus
Hantavirus infections-Old World	Bunyaviridae, Hantavirus: Hantaan, Puumala, Dobrava/Belgrade, Saaremaa & Seoul viruses
Hantavirus pulmonary syndrome	Bunyaviridae, Hantavirus: Sin Nombre, Black Creek Canal, Bayou, New York-1, Andes, etc.
Hendra virus disease	Paramyxoviridae Megamyxovirus [Heninavirus]: Hendra virus
Henatitis A	Picornaviridae Henatovirus: Henatitis A virus
Henatitis B	Hepadnaviridae, Arthobenadnavirus: Hepatitis B virus
Henatitis C	Elaviviridae, Henacivirus: Henatitis C virus
Henatitis D	Deltavirus: Henatitis D virus
Henatitis E	Caliciviridae: Henatitis E virus
Henatitis C	Elaviviridae, Hepacivirus; Hepatitis C virus, HCBV-A, B, and C appear to be related
Horpos simplox onconhalitis	Harvenidae, hepativirus, hepatilis & virus, heby-A, B, and C appear to be related.
Herpes simplex enceptialitis	Herpesviridae, Alphaherpesvirinae, Simplexvirus, herpesvirus (usually type 1)
Herpesvirus simiae infection	Herpesvirus similae infection
HIV infection_initial illness	Retroviridae Lentivirinae: Human Immunodeficiency Virus
	Elaviviridae, Elavivirus
Influenza	Arthomyzoviridae, Arthomyzovirus: Influenza virus
lananasa ancanhalitis	Elaviviridae, Elavivirus: Japanese encenhalitis virus
Karolian fovor	Togoviridae, Havivirus: Sindhis virus
Kuasanur Forost disoaso	Elaviviridae, Alphavilus, Sinubis vilus
	Aronoviridae, Aronovirue: Lassa virue
	Elaviviridae, Elavivirus: Louping ill virus
Louping in	Aronaviridae, Aronavirus: Lymphocytic choriomoningitis virus
Marburg virus disease	Mononegavirales Eiloviridae Eilovirus: Marburg virus
Marburg virus disease Mayaro	Togoviridae Alabavirus: Mavaro virus
Mayalo	Paramyyoviridae, Paramyyovirinae, Morhillivirus: Measles virus
Meningitis_asentic(viral)	Picorpaviridae, enteroviruses
Monkeynox	Povujridae, Orthonovujrus: Monkeynov virus
Mononucloosisinfoctious	Horposviridae, Cammaharposvirinae, Lymphoenintovirus; Human barposvirus
Mumps	Paramuvoviridae. Baramuvovirinae. Lymphocryptovirus. Human heipesvirus
Murray Valloy anaanhalitis	Falanykovindae, Falanykovinnae, Rubulavirus, Nidmps virus
Now World phlobovirusos	Rupyoviridae, Orthobupyovirus: Alonguor, Arbolodos, Ruioru, Cocoo, Condiru, Chagros
New World phiebowrdses	Bunta Toro
Ninah virus disease	Paramyzoviridae Megamyzovirus [Heninavirus]: Ninah virus
O'nyong nyong	Taraniy.covindae, Meganiy.covinds [nenipavinds]. Nipan vinds
Omsk hemorrhagic fever	Elaviviridae, Elavivirus: Omsk bemorrhadic fever virus
Orf	Povviridae, Parapovvirus: Orf virus
Oropouche	Bunyaviridae, Arthobunyavirus, Simbu group virus; Oropouche virus
Parainfluenza virus infection	Paramyoviridae: Respirovirus-Rubulavirus
Parauniteriza virus infection	Paraniyaovindae. Respirovirus-Rubulavirus Paraniyaoviridae. Parvovirinae: Enthrovirus B10
Plourodunia	Parvovinidae, Parvovinidae. Elytinovitus DT9
Pieurodynia Degesta disesse	Togoviridae. Alabovirus Sindhia virus
Pogosta disease	Digernaviridae, Alphavirus, Sinubis virus
Powopop	Ficomavinuae, Ficomavinus, Folio virus
ruwassali Degudeegewaay	riaviviruae, riavivirus: Powassari virus
r seudocowpox Dabiaa	Foxvinuae, Farapoxvirus. Fseudocowpox virus. Phabdouizidae. Mananagovizalee. Luceovizus: Pabiae vizus
naules	nnabuovinuae, Monoriegavirales, Lyssavirus: Kables Virus
Respiratory syncytial virus infection	Paramyxovinuae, Pheumovirinae: Human respiratory syncytial virus
HIL VAILEY TEVER	Duriyaviriuae, Phiedovirus: Kitt valley tever virus
	Flavivinuae, Flavivinus: Nocio virus
Hoseola or numan nerpesvirus 6	nerpesviridae, Betanerpesvirinae, Roseolovirus: Herpesvirus 6 (Herpesvirus / as well)
HUSS HIVER DISEASE	i ogavinuae, Alphavirus: Hoss Hiver virus

Table S3. Continued

Virus
Reoviridae: Rotavirus
Togaviridae: Rubella virus
Bunyaviridae, Phlebovirus: Sandfly fever virus (at least three types)
Togaviridae, Alphavirus: Sindbis virus
Poxviridae, Orthopoxvirus: Variola virus
Flaviviridae, Flavivirus: Spondweni virus
Flaviviridae, Flavivirus: St. Louis encephalitis virus
Poxviridae, Yatapoxvirus: Tanapox virus
Orthomyxoviridae, Thogotovirus: Thogoto virus
Flaviviridae, Flavivirus: Central European encephalitis virus
Flaviviridae, Flavirirus: Russian spring-summer virus
Herpesviridae, Alphaherpesvirinae: Human Herpesvirus 3 (Varicella-zoster virus)
Togaviridae, Alphavirus: Venezuelan equine encephalitis virus
Arenaviridae, Tacaribe complex, Arenavirus: Guanarito virus
Rhabdoviridae, Vesiculovirus: Vesicular stomatitis virus
Flaviridae, Flavivirus: Wesselsbron virus
Flaviridae, Flavivirus: West Nile virus
Togaviridae, Alphavirus: Western equine encephalitis virus
Arenaviridae, Arenavirus: Whitewater arroyo virus
Flaviridae, Flavivirus: Yellow fever virus

Table S4. Genus, Species, and Name of the Associated Disease for Bacteria Reported from at Least One Country Included in the Study

Disease Name	Bacteria
Obligate Intracellular Bacteria	
African tick bite fever	Rickettsia africae
Astrakhan fever	Rickettsia caspii
Bartonellosis	Bartonella (Rochalimaea) henselae, quintana, and elizabethiae
Chlamydia pneumoniae infection	Chlamydia pneumonae
Conjunctivitis-inclusion	Chlamydia trachomatis
Ehrlichiosis-E. sennetsu	Ehrlichia sennetsu
Ehrlichiosis-human granulocytic	Ehrlichia phagocytophila
Ehrlichiosis-human monocytic	Ehrlichia chaffeensis
Flinders Island spotted fever	Rickettsia honei
Israeli spotted fever	Rickettsia israeli
Japanese spotted fever	Rickettsia japonica
Lymphogranuloma venereum	Chlamydia trachomatis Type L1-3
Mediterranean spotted fever	Rickettsia conorii
North Asian tick typhus	Rickettsia siberica
Ornithosis	Chlamydia psittaci
Q fever	Coxiella burnetii
Queensland tick typhus	Rickettsia australis
Rickettsia felis infection	Rickettsia felis
Rickettsialpox	Rickettsia akari
Rocky Mountain spotted fever	Rickettsia rickettsii
South American Bartonellosis	Bartonella bacilliformis
Typhus-endemic	Rickettsia typhi
Typhus-epidemic	Rickettsia prowazekii
Typhus-scrub	Orientia [formerly Rickettsia] tsutsugamushi
Facultative Intracellular Bacteria	

Bacillus anthracis

Bacillus cereus

Anthrax Bacillus cereus Brazilian purpuric fever Brucellosis Campylobacteriosis Chancroid Chronic meningococcemia Clostridial myonecrosis Endemic syphilis (bejel) Erysipeloid Glanders Gonorrhea Granuloma inguinale Legionellosis Leprosy Leptospirosis Listeriosis Lyme disease Malignant otitis externa Melioidosis Mycobacteriosis-M. marinum Mycobacteriosis-M. scrofulaceum Mycobacteriosis-M. ulcerans Nocardiosis Pertussis Pharyngitis-bacterial Pinta Plague Pyomyositis Rhinoscleroma Rhodococcus equi infection Shigellosis Syphilis Tuberculosis Tularemia Typhoid and enteric fever Whipple's disease Yaws Yersiniosis

Haemophilus aegyptius Brucella spp. Campylobacter jejuni Haemophilus ducreyi Neisseria meningitidis Clostridium perfringens Treponema pallidum subsp. endemicum Erysipelothrix rhusiopathiae Burkholderia (Malleomyces) mallei Neisseria gonorrhoeae Calymmatobacterium [Klebsiella] granulomatis Legionella spp. Mycobacterium leprae Leptospira interrogans Listeria monocytogenes Borrelia burgdorferi Pseudomonas aeruginosa Burkholderia (Pseudomonas) pseudomallei Mycobacterium marinum Mycobacterium scrofulaceum Mycobacterium ulcerans Nocardia spp. Bordetella pertussis Streptococcus pyogenes Treponema carateum Yersinia pestis Staphylococcus aureus Klesbellia spp. Rhodococcus equi Shigella spp. Treponema pallidum subsp. pallidum Mycobacterium tuberculosis Francisella tularensis Salmonella typhi Tropheryma whipplei Treponema pallidum subsp. pertenue Yersinia enterocolitica

Table 33. Thylun, dends, species, and hame of the Associated Disease for Hotozoa neported normal Least one obtinity included in the Study		
Disease Name	Protozoa	
Babesioses	Sporozoa, Apicomplexa: Babesia microti, B. CA-1 (U.S.); or B. divergens, B. EU1, and B. bigemina (Europe)	
Leishmaniasis-cutaneous	Neozoa, Euglenozoa, Kenetoplastea. Flagellate: Leishmania tropica	
Leishmaniasis-mucocutaneous	Neozoa, Euglenozoa, Kenetoplastea. Flagellate: Leishmania braziliensis	
Leishmaniasis-visceral	Neozoa, Euglenozoa, Kenetoplastea. Flagellate: Leishmania donovani, L. infantum, L. cruzi	
Malaria	Sporozoa, Apicomplexa: Plasmodium spp.	
Microsporidiosis	Microspora: Enterocytozoon, Encephalitozoon (Septata), Vittaforma (Nosema), Pleistophora, Trachipleistophora, etc.	
Sarcocystosis	Sporozoa, Apicomplexa: Sarcocystis bovihominis or S. suihominis	
Toxoplasmosis	Sporozoa, Apicomplexa: Toxoplasma gondii	
Trypanosomiasis—African	Neozoa, Euglenozoa, Kenetoplastea. Flagellate: Trypanosoma [Trypanozoon] brucei gambiense and T. b. rhodesiense	
Trypanosomiasis—American	Neozoa, Euglenozoa, Kenetoplastea. Flagellate: Trypanosoma cruzi	